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Relaxor ferroelectrics are characterized by their dielectric permittivity, and some of these

materials display outstanding electromechanical coupling, a property that makes them useful

in applications from sonar and ultrasound to precision actuators. However, there is a surpri-

sing lack of consensus regarding the local structure of these materials and how it relates to

their useful bulk properties. A common feature of many proposed mechanisms is the impor-

tance of short-range order differing from the long-range symmetry of the material. Such a

difference between short-range and long-range order makes these materials ideal candidates

for study via diffuse scattering, a technique sensitive to differences between local and average

structure.

Using modern techniques that allow a survey of a large volume of reciprocal space com-

prising dozens of Brillouin zones, diffuse neutron scattering data from across the entire phase

diagram of the canonical relaxor ferroelectric system PMN-xPT has been collected, allowing

for the identification of relevant diffuse scattering features. Complementary x-ray diffuse

scattering measurements confirm the presence of these features, and the difference between

scattering lengths of the two techniques provides contrast that shows how the different atoms



in the material behave. By characterizing how these features evolve with temperature and

composition, they provide a connection between the bulk properties of the system and local

atomic displacements and correlations underlying these bulk properties.

Four main components of diffuse scattering were found. Ferroic diffuse scattering, cen-

tered on the Bragg peak, is found to correlate in intensity to the strength of piezoelectric

coupling and not directly to relaxational behavior. This study finds new structure to this

component that indicates a significant role for correlated oxygen displacements in deter-

mining local polar structures. Broad, temperature-dependent diffuse peaks centered on M

points in the Brillouin zone are indicative of antiferroelectric behavior that become a clear

proxy for bulk relaxor behavior. Temperature-independent peaks centered on R points in-

dicate chemical short-range order for pure PMN and are suppressed with the addition of

titanium, suggesting that chemical order may seed relaxational character but is not respon-

sible for piezoelectricity. Finally, size-effect scattering is identified and separated from other

components, indicating highly anisotropic local environments. These findings are extended

by studies of the electric field dependence of diffuse scattering from PMN-30PT which con-

firm the ferroic nature of diffuse scattering close to the Bragg peak and indicate that the

local distortions revealed through size-effect diffuse scattering remain locally dominant even

at high electric fields. The identification of similar features in diffuse scattering from the re-

lated material PZT indicates the applicability of these results to other lead-based perovskites

with competing ferroic orders.
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CHAPTER 1

INTRODUCTION TO DIFFUSE SCATTERING

One of the most successful applications of physics in the modern era has been the study

of solid materials in the crystalline state. The near-infinite periodicity of crystalline mate-

rials allows physicists to derive exact or near-exact solutions for many-body systems from

the atomic structure of these materials, directly applying quantum mechanical principles

to common macroscopic systems. However, there is increasing interest in materials where

deviations from ideal crystallinity are physically important. Such deviations from long-range

order are of increasing scientific interest, as they may help explain poorly understood phy-

sical phenomena such as colossal magnetoresistance [1], geometric frustration [2], fast ion

conduction [3], and relaxor ferroelectricity [4].

Neutron and x-ray scattering are among of the most powerful tools for understanding

crystal structure. While the long-range order of a crystal determines Bragg scattering, de-

viations from long-range order determines diffuse scattering. Interest in diffuse scattering is

not new [5,6], but it has been experimentally difficult to measure in large volumes for single

crystals. Recent advances in instrumentation combined with improved computation resour-

ces allow for single crystal diffuse scattering surveys of unprecedented scope and rapidity.

As these experiment methods are being developed, methods of analyzing diffuse scattering

are improving, allowing for important insights into the short-range order within a crystalline

material.

This dissertation will discuss the application of these new experimental methods to the

relaxor ferroelectric system PMN-xPT. Relaxor ferroelectrics have been of significant scien-

tific and technical interest for some time [4, 7]; however, a complete physical explanation of
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these materials remains elusive. Short-range order has long been invoked when discussing

relaxor ferroelectrics [8], and diffuse scattering has long been considered a hallmark of the

relaxor state. As such, PMN-xPT is an important test case for both the measurement and

understanding of diffuse scattering.

This dissertation will first discuss diffraction and the theory of diffuse scattering in Chap-

ter 1, which mostly follows the derivations found in [9], adding a few clarifying points and

examples. This chapter will also discuss the intruments and methods for measuring diffuse

neutron and x-ray scattering. Chapter 2 will briefly address ferroelectrics, relaxors, and

the solid solution PMN-xPT, discussing why short-range order is important to the system.

Chapter 3 will detail the extensive diffuse scattering studies performed for this work on PMN-

xPT, first summarizing the findings of the neutron and x-ray experiments, then detailing

the understading gained from examining each component of diffuse scattering. Chapter 4

will describe diffuse scattering experments on PMN-30PT performed with an applied electric

field and how the changes observed in diffuse scattering offer new insights into the underlying

local order present in PMN-30PT. Chapter 5 will describe the results of diffuse scattering

experiments performed on PbZr0.54Ti0.46O3, a similar system to PMN-xPT that shows how

the local ordering found in PMN-xPT may be generalized to other systems.

1.1 Scattering Theory for Crystalline Solids

A crystal is material that can be described by a unit cell, an arrangement of atoms repea-

ting in three dimensions throughout a material [10]. For any macroscopic object, the spatial

extent of this lattice is acceptably approximated by the limit where the lattice is infinite

in extent. Mathematically described, a unit cell is defined by three linearly independent

basis vectors a1, a2, a3, and a finite number of atoms occupying defined positions within the
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volume defined by those basis vectors. Each atom, labelled j , has a position in the unit cell

rj expressed as a fraction xi of the basis vectors:

rj = x1a1 + x2a2 + x3a3

Using this language, the displacement dij between any two atoms ij in the crystal can

be expressed as dij = n1a1 + n2a2 + n3a3 + ri − rj, with the ni being integers; this strongly

restricts the relative position of atoms in a crystalline system. The unit cell is not a uni-

quely determined property of a material. The choice of the origin is arbitrary, and one can

continuously redefine the rj while still describing the same physical arrangement of atoms.

One can also take any unit cell and obtain new basis vectors by multiplying an existing set

by integers; the new unit cell will still be able to describe the position of each atom in the

crystal. However, a unit cell can be chosen so as to minimize unit cell volume and to best

reflect the symmetry operations under which the crystal will be invariant; such a unit cell is

called a primitive unit cell.

The lattice will be invariant under some set of proper and improper rotations; these sym-

metries define the point group of the lattice. There is also a considerable degree of discrete

translational invariance, as the lattice is also invariant under translation by a linear combi-

nation of integer multiples of the basis vectors. The combined rotational and translational

invariances of a lattice define the space group of that lattice. For three-dimensional lattices,

there are 32 point groups and 230 space groups. With an appropriate unit cell chosen, the

unit cell is characterized by the lattice parameters a, b, c, α, β, and γ (Fig. 1.1). The lengths

a, b, and c describe the length of the basis vectors, while α, β, and γ are the angles between

the basis vectors.

In anticipation of the consideration of scattering from crystals, it is useful to define the

reciprocal lattice, a vector space derived from the basis vectors of the crystal lattice in real
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Figure 1.1: The unit cell is defined by the basis vectors a1, a2, a3. a, b, c are the lengths of
the vectors, and the angles between the ai are denoted by α, β, γ.

space. The basis vectors a∗i of this reciprocal lattice will be defined using the real space basis

vectors ai as

a∗i = 2π
aj × ak

ai · (aj × ak)

By this construction, the real and reciprocal lattice vectors have the useful property

ai · a∗j = 2πδij

with δij the Kronecker delta function. Where the crystal lattice is expressed in units of

length, the reciprocal lattice has units of inverse length. The region of reciprocal space

surrounding points on the reciprocal lattice defines the first Brillouin zone of the reciprocal

lattice (Fig. 1.2), analogous to the unit cell.

It is difficult to directly examine the atomic lattice defining the structure of a crystalline

material. Even those tools which do directly probe the atomic structure of a material are

inevitably focused on the surface and have difficulty providing a statistical average of the

structure throughout a bulk material. The scattering of some mediating particle (usually

x-rays, neutrons, or electrons) from a crystalline lattice provides indirect information as to

the structure of the lattice. Scattering from an ideal crystal is described by Bragg’s Law.
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Figure 1.2: The first Brillouin zone for a cubic reciprocal lattice. The center of the zone is
a reciprocal lattice point, represented by ha∗1 + ka∗2 + la∗3, with h, k, l ∈ n (n is the set of all
integers). This zone center can be referred to as the Γ point. Other special points include
the X point, with two of h, k, l belonging to n and one belonging to n + 1

2
; the M point,

with one of h, k, l belonging to n and two belonging to n + 1
2
, and the R point, with h, k, l

all belonging to n+ 1
2
.

In its simplest form, Bragg’s Law is expressed as a condition for the scattering of a beam of

wavelength λ incident upon a series of equally spaced planes to constructively interfere after

reflection:

nλ = 2d sin(θ)

Here, d is the distance between planes, θ the angle between the incident beam and the

series of planes, and n some natural number. The scattered wave will exhibit constructive

interference only for certain discrete values of θ; for most values of θ, the scattered wave will

destructively interfere with itself and produce no scattering amplitude.

As defined earlier, a crystal can be considered a three-dimensional array of atoms, for-

ming regularly-spaced planes in three dimensions. Constructive interference will occur if

the Bragg’s Law is simultaneously satisfied in three dimensions. For an incident wave of
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wavelength λ travelling along unit vector k̂0 and scattering elastically along unit vector k̂

and letting Q = k̂0 − k̂, this is described by the three Laue conditions:

Q · a1 = 2πλh

Q · a2 = 2πλk

Q · a3 = 2πλl

with h, k, l being integers. Expressing the incident wavevector in terms of the reciprocal

lattice basis vectors a∗i yields

Q = (ha∗1 + ka∗2 + la∗3)

Just as the periodicity of the lattice defines a natural basis in real space, Bragg peaks

in reciprocal space form a lattice defined by the reciprocal space basis vectors. For an

ideal crystal, it is only at discrete wavevector points matching linear combinations of integer

multiples of the reciprocal lattice basis vectors that a scattered beam will constructively

interfere and produce intensity. Sampling a range of Q will yield no scattered intensity

for almost all scattered vectors but will find sharp peaks of intensity at Q coinciding with

reciprocal lattice points (Fig. 1.3). These discrete points are referred to as Bragg peaks, and

the integer multiples h, k, l of the vector are adopted as the Miller indices of Bragg peaks1.

These peaks are a natural reference point in reciprocal space. Within the first Brillouin zone

surrounding a Bragg peak hkl, a point in reciprocal space can be defined by a reciprocal

space vector from the center of the zone Qhkl to the point qhkl = Q−Qhkl.

1The indices hkl can be used to refer to several distinct objects. Without any parentheses, hkl refers to
the Bragg peak itself. (hkl) refers to a plane in reciprocal space, e.g., (hk0) is the plane where l = 0. [hkl]
refers to a direction in reciprocal space, e.g,. [111] would be the direction from the 321 reflection to the 432
reflection, and 〈hkl〉 refers to the set of all directions symmetrically equivalent to [hkl]. In the interest of
compactness, a negative number is indicated by an overscore, e.g. 110.
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Figure 1.3: The Ewald Sphere construction is a useful visualization of Bragg’s Law. The
sphere has radius 1/λ, the incident and scattered wave vectors k̂0/λ and k̂/λ point from the
center of the sphere to the surface, and the origin O of the reciprocal lattice of the scattering
crystal coincides with the end of the incident wave vector k̂/λ. Bragg’s Law is satisfied if Q
intersects a lattice point on the reciprocal lattice.

The amplitude of the scattered wave is determined by the atoms j within each unit cell

and their relative positions and is proportional to the structure factor F (Q):

F (Q) =
∑
j

fj(Q)eiQ·rj

In this equation, fj(Q) represents the scattering length for atom j. For x-rays, which

interact with charge density, this scattering length is mostly proportional to the atomic

number Z, and decays as Q increases due to the extended nature of the electrons surrounding

the nucleus. For neutrons, which interact with the point-like atomic nuclei via the strong

nuclear force, the form factor is constant to very large Q (at least 100 Å−1) and is not directly

related to the atomic number. This is well-approximated by the Fermi pseudopotential

Û(r) = bjδ(r−Rj), with j being some atom and bj being its neutron scattering length [11].

For a crystal containing N unit cells, the observed intensity S(Q) is given by S(Q) =

N2|F (Q)|2. More generally, S(Q) from a collection of scatterers m with position Rm is given

by
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S(Q) =
∑
m

∑
m′

fmfm′eiQ·(Rm−R′
m)

Even more generally, S(Q) can be viewed as the Fourier transform of scattering density

of the crystal:

S(Q) ∝ |
∫
eiQ·rρ(r)dr|2

The scattering density ρ(r) here will depend on the interaction between the crystal and

the scattering medium. X-rays will interact with charge, making ρ(r) the charge density

of the crystal, while neutrons interact most strongly with nuclei, making ρ(r) the nuclear

scattering length density. The Fourier transform of a diffraction pattern is called the Patter-

son function and is an auto-correlation (or pair-distribution) function of scattering density.

Measured diffraction intensities will always display inversion symmetry, even if the lattice

that generates these intensities does not. This is a consequence of Friedel’s Law for Fourier

transforms [12], and it means that a scattering experiment cannot distinguish between some

atomic arrangement and its spatial inverse. This result holds beyond the case of the ideal

crystal.

One of the assumptions made so far is that the scattered particle scatters without any gain

or loss in energy, or elastically. Inelastic scattering occurs when the scattered particle gains

or loses energy in its interaction with the scattering material. Elastic scattering does not

only originate from a purely static lattice; it represents the static correlations of a dynamic

system, with more scattering being inelastic in proportion with the dynamics of the system.

Inelastic scattering provides a view of the phonon dynamics of the lattice [11].
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1.2 Diffuse Scattering from Crystalline Materials

For all the successes of the theory of crystalline materials, there are numerous ways in

which real materials deviate from the assumptions made in describing them. The prior

treatment of scattering from an ideal crystal depends on a perfect lattice of infinite extent,

in which every unit cell is exactly identical. Real materials can deviate from this ideal in

many ways, and even subtle deviations from the assumptions of ideal crystallinity can have

strong effects on material properties. For example, the assumptions of infinite periodicity are

violated near surfaces of materials and at interfaces between areas of different crystal systems,

and the physics of thin films and polycrystalline materials can be drastically different from

those of bulk single crystals.

Structural deviations from ideal crystallinity affect scattering from crystalline materials

by allowing scattering that does not arise from the restrictive Bragg condition. This scat-

tering may appear anywhere in reciprocal space, both coinciding with the Bragg peaks and

between them, and is generally referred to as diffuse scattering. Diffuse scattering is typically

several orders of magnitude weaker than Bragg scattering [9], making measurement difficult,

but it can provide insight into local correlations that differ from the average structure of a

material.

While deviations from ideal crystallinity complicate the preceding discussion of scattering,

scattering can still be expressed as the Fourier transform of scattering density [13]. Quite

generally, diffuse scattering is produced by various moments of the probability distribution

of atomic positions from their average positions and is indifferent to the physical forces

generating those moments; any kind of probability correlation in occupancy or displacement

that is non-zero locally but zero for the average crystal can produce diffuse scattering. Just

as the three-dimensional correlations of atomic positions in real space produces sharp zero-
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dimensional points in reciprocal space, the dimensionality of short-range correlations in real

space determines the shape of the corresponding diffuse scattering so that the sum of the

dimensionalities equals that of the space. For a three dimensional crystal, a one-dimensional

correlation will produce a plane of diffuse scattering. More quantitatively, the scattering

equation can be modified to allow for deviations in both the occupation of crystallographic

sites and the position of the atoms at those sites, with conditional correlations of and between

these types of deviations producing scattering differing from Bragg scattering from an ideal

crystal. Following the treatment of Borie and Sparks [14] (and subsequent [9,15]), each atom

j has a position rj = Rj+uj, with uj being the deviation of atom j from its average position

Rj; all of these are expressed in fractional coordinates of the unit cell. This modifies the

original scattering equation:

S(Q) =
∑
i

∑
j

bibj exp(iQ · (Ri + ui −Rj − uj))

S(Q) =
∑
i

∑
j

bibj exp(iQ · (Ri −Rj)) exp iQ · (ui − uj))

The exponential term containing the deviation term can be expanded in a Taylor series:

S(Q) =
∑
i

∑
j

bibj exp(iQ · (Ri −Rj))×
{

1 + iQ · (ui − uj)−
1

2
Q · (ui − uj)

2 − ...
}

Subtracting the Bragg scattering yields a separation of diffuse scattering terms in the

exponent of the deviation uj:

Idiffuse = I0 + I1 + I2 + ...



11

These first three terms will be considered in more detail. Higher-order terms exist and

can contribute to diffuse scattering, but tend to be of vanishing importance compared to

the first three since (ui − uj) � 1 even in non-ideal crystals. In a case where is necessary

to consider I3 or some higher-order term, it is very likely that at least one of the first three

terms will also require consideration.

1.2.1 Chemical Short-Range Order

Chemical short-range order occurs when there are multiple possible occupants of a certain

crystallographic site, and the probability of a certain occupant is dependent on the occupa-

tion of neighboring sites. More formally, consider a material that has a crystallographic site

with multiple possible occupants i, each with a concentration ci; by definition,
∑

i ci = 1. For

any two sites separated by real space vector dlmn (expressed in real-space lattice units l,m,

and n), the probability that the first is occupied by occupant i and the second by occupant

j is denoted pijlmn. These pijlmn are of course strongly correlated with each other; if there are

N possible occupants, the pijlmn will number N2 , but the number of independent parameters

defining the pijlmn is 1
2
(N×(N−1)) for N > 1. Also useful is the conditional probability P ij

lmn,

defined as the probability that occupant j is found at the end of average lattice vector dlmn

given that occupant i is found at the beginning of that vector; this probability is somewhat

more naturally applied to the expansion of the scattering equation. It should be noted that

ciP
ij
lmn = pijlmn.

A final set of quantities useful in considering chemical short-range order are the Warren-

Cowley short-range order parameters αijlmn [16], which are defined as follows:

αijlmn = 1− P ij
lmn

cj
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While this term may seem to add nothing but another layer of variables to an already

variable-laden discussion, the Warren-Cowley parameters are a natural term with which to

discuss chemical short-range order. Most usefully, it is noted that αijlmn = 0 when P ij
lmn = cj,

describing a conditional probability identical to that random occupation. An αijlmn > 0

describes a probability of ij pairs for vectors dlmn being less than would be expected if the

species were randomly distributed, and αijlmn < 0 describes a probability of ij pairs being

greater than expected in the random case.

A useful identity in this formulation is αijlmn = αjilmn. This can be shown by applying

Bayes’ Theorem, P (A|B)
P (A)

= P (B|A)
P (B)

, to the definitions of the Warren-Cowley parameters:

P ij
lmn

cj
=
P ji
lmn

ci
⇒ P ij

lmn =
cj
ci
P ji
lmn

αijlmn = 1− P ij
lmn

cj
= 1− cj

ci

P ji
lmn

cj
= 1− P ji

lmn

ci
= αjilmn

Another useful property of the αijlmn is

∑
j

cjα
ij
lmn = 0

,

derived from the definition of the αijlmn,
∑

j P
ij
lmn = 1, and

∑
j cj = 1:

P ij
lmn = cj(1− αijlmn)

∑
j

P ij
lmn

cj
=
∑
j

cj(1− αijlmn) = 1

∑
j

cj −
∑
j

cjα
ij
lmn = 1

∑
j

cjα
ij
lmn = 0
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For binary systems in particular, it is seen that αijlmn = − ci
cj
αiilmn. As there is only one

indepent parameter defining the probability of the four possible atomic pairs, there is only

one independent αijlmn for a given lmn.

Returning to the scattering equation, the first term in the diffuse scattering expansion

can now be expressed as a function of reciprocal space coordinate hi (in reciprocal lattice

units)2 as a sum over distinct atomic specie pairs ij as

I0 = −N
∑
ij

∑
lmn

cicjbib
∗
jα

ij
lmn cos(2π(h1l + h2m+ h3n))

The cos(2π(h1l+h2m+h3m)) factor in this term makes this feature even in intensity across

Bragg positions.

The effects of chemical short-range order are perhaps best illustrated by example (Fig.

1.4). Consider a binary alloy on a simple square atomic lattice with two occupants, A and

B, that have equal concentration cA = cB = 0.5. In the ordered limit, A and B form

a rock-salt structure on the lattice, with every atom having all four nearest-neighbors be

of the other type. In this limit, the unit cell is effectively doubled in volume, with two

sublattices containing each of the different types of scatterers; this leads to Bragg peaks at

the (h+ 1
2
, k+ 1

2
, 0) positions. The Warren-Cowley parameters are finite even as dlmn →∞,

as the system can be described using long-range order. Calculating I0 in this case would be

impractical, as the series defining it is infinite; more to the point, this case can be adequately

described using the doubled unit cell in a case of no disorder. In the opposite, disordered

limit, the occupation of every site is completely random and uncorrelated with its neighbors.

The scattering pattern resulting from the disordered system is identical to a monatomic

lattice with scattering factor equal to the average of A and B; as the cubic unit cell is

2The use of reciprocal lattice units to express reciprocal space coordinates and fractional coordinates to
express atomic positions will add a factor of 2π to these equations; as diffuse scattering data is usually best
expressed in reciprocal lattice units, this is a considerable convenience.
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Figure 1.4: A simple 200 × 200 square atomic lattice with two occupants of equal concentra-
tion will produce I0 scattering depending on the Warren-Cowley parameters. (a) Random
occupation of sites; the only diffuse scattering is Laue monotonic scattering. (b) Rock-salt
ordering of atoms, effectively doubling the unit cell. (c) Short-range order generated using a
Monte Carlo process in DISCUS with αA−B〈100〉 = −0.5. (d) Short-range order generated using

a Monte Carlo process in DISCUS with αA−B〈100〉 = −0.9. For (c) and (d), only first nearest-
neighbor interactions were used in the Monte Carlo simulation, but higher correlations are
present.
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appropriately chosen, there will be no Bragg peaks at non-integer positions. In both of these

extreme cases, diffuse scattering is minimal, only arising from self-correlation of the I0 term.

This scattering is called Laue monotonic scattering, and it is quite weak, only observable in

systems with very little short-range order.

In between the completely ordered and the completely random limits are states defined

by chemical short-range order. In these states, the Warren-Cowley parameters are non-zero

for certain dlmn within some finite upper bound for mathbfd; above this upper bound, all

dlmn are zero. As might be expected, scattering from such materials falls in between the

completely ordered and completely disordered limits, with broad, diffuse peaks present at

h + 1
2
, k + 1

2
, 0 positions. The width of these peaks is inversely related to the length of

correlations [17].

1.2.2 Size-Effect Scattering

Diffuse scattering may also result from the displacement of an atom being dependent upon

the chemical identity of a neighbor. Such scattering is referred to as size-effect scattering.

This is associated with the I1 term of the diffuse expansion. Short-range displacement

correlations now need to be considered. With the position of each atom being rj = Rj + uj,

the displacement from equilibrium position uj can be broken into its components,

X ij
lmn = (ujlmn)x − (ui0)x

Y ij
lmn = (ujlmn)y − (ui0)y

Zij
lmn = (ujlmn)z − (ui0)z
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Applying the same substitution of P ij
lmn and cj to the second term of the expansion yields

I1 = −2πN
∑
ij

∑
lmn

cicjbib
∗
j(1− α

ij
lmn) sin(2π(h1l + h2m+ h3m))

×
[
h1〈X ij

lmn〉) + (h2〈Y ij
lmn〉) + (h3〈Zij

lmn〉)
]

While more complicated than I0, a few key features of I1 can be seen in this analytical form.

The sine term means that I1 will be antisymmetric with respect to Bragg peaks. Atomic

specie is important here due to the odd expectation value for deviations of type X ij
lmn; this

will usually suppress interactions between atoms of the same type for this term, as any

deviation from X ii
lmn = 0 would define a new unit cell. I1 thus describes diffuse scattering

resulting from a dependence of atomic displacements upon atomic specie, or a size-effect3.

As an example, consider again a simple square atomic lattice of two atom types, A and

B, with equal concentration cA = cB = 0.5, these atoms are randomly distributed, making

αA−Blmn = 0 for all lmn and suppressing I0 diffuse scattering. The average nearest-neighbor

distance defines the size of the unit cell, but this nearest-neighbor distance varies locally

depending on the atom pair: A − A pairs tend to have a smaller nearest-neighbor distance

than average, B−B pairs tend to have a larger distance, and A−B pairs tend to the average.

The diffuse scattering produced by this short-range order will be odd in parity across Bragg

positions and will depend on the relative scattering lengths of A and B (Fig. 1.5).

3This is not to be confused with a dependence of scattering on the size of the crystal itself! Such a
dependence on physical crystal size is usually due to deviations in structure at the surface of a crystal and
will be referred to here as a skin effect.
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Figure 1.5: A simple 100 × 100 square atomic lattice with two occupants A and B of equal
concentration produces I1 scattering. A Monte Carlo procedure optimized the displacements
between A−A atoms pairs to be 0.95 times that of the average, A−B pairs to be of average
distance, and B − B pairs to be 1.05 times the average. Higher-order interatomic distances
are not considered in the simulation but are affected. (a) Scattering length f(A) < f(B).
(b) Scattering length f(B) < f(A). (c) The scattering lengths f(A) = f(B). This could be
considered I2 type scattering, as the atoms could be considered to be identical.
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1.2.3 Displacement Correlations

Displacement correlations can also be independent of the chemical species. The next

term in the expansion is related to the mean-square deviation of the displacements:

I2 = −2π2N
∑
ij

∑
lmn

cicjbib
∗
j(1− α

ij
lmn) cos(2πh1l + h2m+ h3n)

×
[
h21(〈(X

ij
lmn)2〉 − (1− αijlmn)−1〈(X ij

∞)2〉)

+h22(〈(Y
ij
lmn)2〉 − (1− αijlmn)−1〈(Y ij

∞ )2〉)

+h23(〈(Z
ij
lmn)2〉 − (1− αijlmn)−1〈(Zij

∞)2〉)

+2h1h2〈X ij
lmnY

ij
lmn〉+ 2h1h3〈X ij

lmnZ
ij
lmn〉+ 2h2h3〈Y ij

lmnZ
ij
lmn〉

]
Note that both time-averaged and spatially averaged terms can be included here; the I2

term is often referred to as the thermal diffuse scattering and Huang scattering component

( [9, 15]).

One can generate this kind of scattering by returning to the example of I1, with atomic

displacements depending on the ij pair, and giving each atom an identical scattering length

(Fig. 1.5(c)). In this case, the I1 scattering term vanishes, as there is only one type of

atomic specie pair, and the average displacement X ii
lmn from average positions is zero. The

mean-square displacement, however, remains non-zero, producing a finite I2 term.

A similar example of I2 scattering is Huang scattering, where a dilute ‘defect’ atom in a

lattice induces a local distortion in the lattice, forcing nearby atoms to respond. While the

defect atoms could be a source of I1 scattering if their scattering lengths differ from that of

the host lattice, they are sufficiently few in number that the greater effect is caused by the

distortion of the atoms in the host lattice. The resulting scattering (Fig. 1.6) is very much
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like that seen from a size-effect where the scattering lengths are equal. Notably, scattering

from atoms moving away from a defect is quite similar to that of atoms moving toward

the defect; the even parity of the cosine terms makes the I2 contribution from both cases

identical.

As a final example of this term, consider a square lattice of atoms, this time all occupied

by the same type of atom. Each atom is displaced from its average position in its unit cell

by the same distance δ along one of four possible 〈100〉 directions or 〈110〉 directions. The

direction of the displacements is correlated between unit cells, with like displacements being

favored and opposite displacements being disfavored. The displacement directions between

the atoms correlate between either nearest neighbors or next-nearest neighbors. The diffuse

scattering patterns produced all display rods of scattering (Fig. 1.7), reflecting the one-

dimensional nature of the real space correlations. It is seen that the direction of the rods

in reciprocal space is determined by the direction of the correlation and not the direction of

the displacement. It is also notable that the real space displacements are all discrete while

the diffuse scattering is broad and continuously varying.

1.3 Measuring Diffuse Scattering

The goal of a diffuse scattering experiment is the mapping of reciprocal space intensities

in an area or volume of interest. While these experiments can borrow instrumentation,

detectors, and language from single-crystal diffraction experiments, the requirements for

measurements and detection are quite different. For a standard single-crystal diffraction

experiment, the goal is to accurately determine the intensity and reciprocal space position of

a certain number of Bragg reflections; depending on instrumentation and the system being

studied, between 50 and 10000 reflections may be considered ideal. The size of the dataset
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Figure 1.6: A simple 200 × 200 square atomic lattice of lattice constant a has 20 randomly
selected atoms replaced by atoms of the same scattering length but different effective size.
Nearest or next-nearest neighbors move toward or away from the defect, with surrounding
atoms relaxing to best maintain equilibrium distance. The slight asymmetry observed is due
to a contribution from the I3 term in the expansion.
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Figure 1.7: A simple 200 × 200 square atomic lattice of lattice constant a has each atom
displaced by a small amount δ = a/20 in one of four directions, 〈100〉 or 〈110〉. A Monte Carlo
procedure produces a correlation between displacements, with displacements in the same
direction being favored and those of opposite direction being disfavored; these correlations
are applied to nearest neighbors or to next-nearest neighbors. The rods of scattering formed
by the one-dimensional correlations are determined by the direction of the correlation, not
the direction of the displacement.
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is on the order of the number of reflections characterized, possibly including whatever peak

profile parameters that have been extracted from the measurement.

In contrast, a diffuse scattering experiment can be interested in the intensity of every

position of reciprocal space within a certain volume of interest up to a certain resolution. A

very modest dataset may be comprised of scattering intensities in a well-defined plane around

a single Bragg peak; even a limited picture may require some 30 points of measurement each

in two dimensions to resolve anything, or on the order of 103 intensity measurements; this

is already similar to the amount of data required for Bragg refinement! Studying multiple

peaks or a three-dimensional volume using a point detector becomes impractical very quickly.

Furthermore, each of these intensities will require sufficient counting time to achieve an

acceptable signal-to-noise ratio. Given that diffuse scattering intensities are almost always a

few to several orders of magnitude weaker than Bragg intensities, diffuse scattering studies

using point detectors are usually limited to a single plane of reciprocal space surrounding

one or a few Brillouin zones.

The use of area detectors allow for diffuse scattering measurements to be completed

much more efficiently. While area detectors of the past have been limited by slow readout

times or small dynamic range, modern x-ray and neutron area detectors are able to measure

scattering intensities in a large region of reciprocal space quickly enough to allow for rapid

surveys. Such instruments promise the ability to simultaneously collect Bragg intensities and

diffuse scattering, making the study of diffuse scattering much more relevant to the broader

crystallographic community.

While collecting data in a volume of reciprocal space may be greatly simplified, the

tools used to display such data remain limited by the two-dimensional surfaces used to

view them. Point detector instruments can produce line cuts of intensity; these can be

reproduced from three-dimensional data but often fail to capture all the relevant features

with diffuse scattering data. While three-dimensional objects may be captured and rendered
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from intensity contours in measured diffuse scattering, such objects offer limited flexibility

in investigating extended diffuse scattering features and may obscure unexpected features.

Two-dimensional color plots match the dimensionality of the surfaces used to display data

but require a color scale to define intensities; these color scales can be misleading on their own

and will always have minimum and maximum values constraining the colors displayed. The

challenge of accurately and completely displaying three-dimensional data on two-dimensional

surfaces (such as this work) has not been solved here, but a few rules-of-thumb have been

found to be useful:

1) Use a perceptually uniform color scale; grayscale is accurate but drab, the commonly-

used ‘jet’ tends to overly emphasize mid-range colors. This work will use the ‘viridis’ color

map from the MatPlotLib Python package.

2) Use a logarithmic scale if the features displayed differ in intensity by orders of magni-

tude; otherwise, use a linear color scale.

3) Show representative line cuts to isolate broad or weak features and to help track

changes in ennvironment like temperature or applied field.

The Python-based program NeXpy has been used extensively in this work both to vi-

sualize and perform quantitative analysis upon both x-ray and neutron diffuse scattering

data.

1.3.1 Measuring Diffuse Neutron Scattering

Neutron diffuse scattering requires a source of neutrons, usually either a reactor designed

to produce a continuous neutron flux or a spallation source that produces regular pulses

of intense neutron flux. Neutron sources produce significantly less flux than x-ray sources

and require much longer counting times to achieve similar statistics. However, because a
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neutron’s velocity is proportional to its energy, one can use the time-of-flight to determine

the energy of a neutron. This in turn allows the use of a broad band of wavelengths simulta-

neously, Laue diffractometry, while still maintaining the ability to determine the wavelength

of the scattered neutron.

A standard instrument at many reactor sources is the triple-axis neutron spectrometer.

Using monochromators and analyzers to establish both incident and scattered energy, triple-

axis spectrometers offer resolution and flexibility in measuring inelastic signals and can

be used to make high-resolution elastic measurements [18]. Most previous diffuse neutron

scattering studies on relaxors have been performed using these instruments. Triple-axis

spectrometers typically do not employ area detectors and are thus not optimized for diffuse

scattering measurements; they are also typically limited in maximum |Q| to 7 Å−1, with

highest flux achieved within 4 Å−1, greatly reducing the potential scope of study.

The instrument Corelli ( [19–21]) at the Spallation Neutron Source is a Laue diffractome-

ter designed to measure elastic diffuse scattering, utilizing a large bank of area detectors and

a broad spectrum of neutron energies to achieve a large volume of Q coverage. The energy

of the scattered neutrons is determined by time-of-flight, and a cross-correlation chopper

that introduces a pseudorandom signal to the incident beam. By identifying events with

different periodicity from the pseudorandom chopper signal, inelastic events are removed.

This allows for static diffuse scattering to be separated from inelastic contributions within a

certain energy resolution.

Scattering from a single sample is typically observed over a range of sample orientations

to measure scattering in a large volume of Q. Corelli ’s CCR (closed-cycle refrigeration) unit

is able to achieve a base temperature of 6 K and a maximum temperature of near 500 K

without using a heat shield. Using an aluminum heat shield will add aluminum rings as a

background signal while increasing the upper heat limit to 700 K; other sample environments

continue to be developed and can expand this temperature range even further. Algorithms
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for analyzing data collected using Corelli have been implemented in Mantid [22]; data from

Corelli in this work have been processed using these Mantid algorithms.

1.3.2 Measuring Diffuse X-ray Scattering

While laboratory sources and instruments are capable of measuring diffuse scattering, x-

ray synchrotron sources offer distinct advantages of easily tuned and tightly monochromatic

beams and extremely high flux. However, the type of fast area detectors used to measure

diffuse x-ray scattering are currently unable to determine the wavelength of scattered x-rays;

this inability to measure the scattered wavelength makes diffuse x-ray scattering experiments

inherently less able to distinguish between elastic and inelastic scattering.

The diffuse x-ray scattering experiments performed for this work were done at the Cornell

High-Energy Sychrotron Source (CHESS), utilizing a Pilatus 6M x-ray detector with 1mm

thick Si detector chips. Detector geometry parameters such as sample-to-detector distance

and the beam center on the face of the detector were established by calibration to CeO2

powder standard. A nitrogen cryostream was placed above the sample position to control

sample temperature within 100 K to 400 K. A crystal was placed in the beam on a goniometer

and continuously rotated about an axis denoted φ at a rate of 1◦ per second. The area

detector operated continuously, reading out a new frame every 0.1 seconds over a range of

φ angles, typically 365◦ but sometimes limited to a smaller range. This produces a stack of

3,650 x-ray detector images.

A peak search algorithm is then applied to the image stack to identify Bragg peaks

from the sample. The 2θ angles of these peaks can be compared to those expected from

the detector geometry and the unit cell of the crystal; experimental lattice parameters are

extracted by refining lattice parameters, the beam center, and detector offset angles to these
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2θ angles. The orientation matrix U of the crystal is roughly derived by assigning hkl indices

to a few peaks; if this estimation is sufficient to map most of the detected peaks near to

self-consistent integer hkl values, U can be refined further, along with offsets to the nominal

goniometer angles. Using this orientation data, the raw detector data can be transformed

into oriented reciprocal space using the software CCTW (Crystal Coordinate Transformation

Workflow, [23]). A complete expression of detector geometry and how it relates to Q-space

is found in Appendix 1.

CCTW places x-ray counts into reciprocal space bins of constant size throughout a vo-

lume; the chosen bin size should not be smaller than the largest reciprocal space resolution in

the transformed volume. Reciprocal space resolution will vary with Q and will have different

perpendicular and in-plane components. The perpendicular component ∆Qφ is determined

by the step size ∆φ and will vary depending on both 2θ and the relative angle µ between Q

and the φ axis as ∆Qφ ∝ sinµ. For small ∆φ:

|∆Qφ| =|Q(φ)−Q(φ+ ∆φ)|

∆Qx =−Qy sin ∆φ

∆Qy =Qx sin ∆φ

|∆Qφ| = sinµ sin ∆φ|Q|

The experiments conducted at CHESS used ∆φ = 0.1◦ and had a maximum |Q| of about

15 Å−1 ≈ 10 r.l.u., yielding |∆Qφ| ≈ 0.017 r.l.u.

The in-plane resolution, ∆Qr, can be approximated using the simple form of Bragg’s

Law by determining the change in d-spacing over a single detector pixel of length sp and

using the relation |Q| = 2π
d

. For a scattering geometry with sample-to-detector distance l,
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beam center (xcen, ycen), scattered beam incident on the detector at r = (x, y)− (xcen, ycen),

r = |r|, and assuming the incident beam is perfectly normal to the detector face,

∆Qr =|Q(r)−Q(r + sp)|

=
4π

λ
| sin(

1

2
arctan

r

l
)− sin (

1

2
arctan

r + sp
l

)|

For the experiment at CHESS, this yields an upper limit of ∆Qr ≈ 0.01 r.l.u. for the

aristotype perovskite unit cell.

Bin size should be chosen to be larger than both these limits. It is often desirable to

have both Bragg peaks and special points on the boundary of Brillouin zones consistently

lie in bin centers and not on bin boundaries; to achieve this, bins of 0.05, 0.02, or 0.01 r.l.u.

are preferred. One should also consider the size of the output file; halving the bin size in

each of three dimensions will increase the size of the transformed data by a factor of eight!

If very high experimental resolution is achieved, it may be necessary to limit the volume of

reciprocal space investigated.

1.4 Modelling Diffuse Scattering

The general problem of reconstituting atomic positions from a scattering pattern is an

inverse problem: possible models that reproduce observed scattering are not certain to be

unique. Indeed, it is quite possible for vastly different models to produce qualitatively similar

results. An example of immediate relevance to this work is the relaxor PbMg1/3Nb2/3O3,

shown by Pasciak et al. [24] to have similar diffuse scattering from a variety of different

models. Given both the complexity of the functional forms of scattering data and its inherent

loss of phase information, analysis of diffuse scattering data can be quite difficult, as the
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question of what real-space structure generates the measured reciprocal-space intensities does

not have a unique analytical solution. One way to address these difficulties is by simulating

data from a crystal with certain correlations and comparing the simulated scattering to that

obtained from experiment. While this does not address uniqueness concerns, it may be easier

to understand the effects of various types of order when they can be simulated; at the very

least, models can be eliminated by showing that they produce scattering that does not match

measured intensities. An ideal case study would involve the comparison of experimental data

to its analytical forms and to simulated data. Until solutions to structural correlations can

be directly derived from data (an unlikely prospect in the near term!), comparisons among

experimental data, analytical forms, and simulated data will be useful tools in understanding

diffuse scattering. Scattering calculations from simulated crystals in this work have been

done using DISCUS software [25, 26], which can find scattering from an arbitrary array of

atoms with given positions. DISCUS also has a simple mixed Monte Carlo routine built-in

for structural simulations. By defining equivalent atomic position in the unit cell as well

as atom neighborhoods, both chemical short-range order and displacement correlations can

be simulated within a model crystal, and the scattering from the model crystal can then be

calculated in either a plane or a volume of reciprocal space.

As an example, consider a crystal with a cubic lattice and combine the chemical ordering

and size-effect demonstrated earlier. A simulation can quickly provide a qualitative picture

of the change in scattering by producing simulated crystals with different αA−B〈100〉 , applying

the same size-effect potential to each, then calculating the scattering from each (Fig. 1.8).

As expected from the (1−αijlmn) term in I1, increasing chemical short-range order suppresses

size-effect scattering, even as the deviations 〈XA−B
lmn 〉 remain largely unchanged.
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Figure 1.8: A simple 100 × 100 square atomic lattice with two occupants A and B of
equal concentration produces I1 scattering; the occupants A and B have varying amounts of
short-range order. Increasing chemical short-range order suppresses size-effect scattering in
this case, due both to the (1− αijlmn) factor in I1 and to reduced longer-range displacement
correlations.



CHAPTER 2

INTRODUCTION TO FERROELECTRICS AND RELAXORS

An electrically neutral object with separated positive and negative charges is an electric

dipole. This dipole is defined by the electric dipole moment p = qd, the product of the

magnitude of the separated charges q and the vector displacement d between them. A

dielectric material is one which is insulating, preventing any major redistribution of electric

charge under an applied electric field, and instead develops a bulk electric polarization due

to slight displacements of electric charge. A dielectric crystalline material could be viewed

as having a dipole moment in each unit cell, with the bulk polarization being the sum of

these microscopic dipoles. However, the unit cell is not a unique property of a material; a

differently defined unit cell can show different electric polarizations for the same configuration

of charges by having different surface charges. This ambiguity in microscopic polarization can

be removed by considering the electronic wavefunctions, where polarization can be expressed

as an invariant Berry phase independent of unit cell choice; in this picture, polarization is

established as a truly quantum phenomenon [28,29].

2.1 Ferroelectrics and Relaxors

Some definitions of electric crystals can now be made. A pyroelectric crystal is a crystal

whose natural unit cell has a finite dipole moment [30]; this microscopic dipole moment

adds up to a net polarization of the bulk material. Such an arrangement of atoms severely

Material is this chapter has been adapted with permssion from [27].
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Figure 2.1: Above TC , a ferroelectric material displays no spontaneous polarization. Below
TC , polarized states become energetically favorable, and an applied electric field can select
an individual state.

restricts the possible symmetry of a pyroelectric crystal; only non-centrosymmetric space

groups can give rise to this phenomenon. Some materials have no bulk electric polarization

at high temperature, but spontaneously polarize upon cooling below a certain temperature.

In analogy to ferromagnetism, such materials are called ferroelectric, with the transition

temperature TC called the Curie temperature. Ferroelectrics can also respond to an applied

electric field by aligning their polarization direction with that of the applied field (Fig. 2.1).

Ferroelectrics typically possess a large dielectric permittivity ε, following a Curie-Weiss Law

ε ∝ 1
T−TC

[31]; as the polarization states are distinct but close in potential energy near TC ,

there is a large enhancement of ε near TC . The measured permittivity ε is independent of

the frequency of the applied field.

Ferroelectricity in crystals is inherently tied to crystallographic structure; a crystal des-

cribed by a point group containing inversion symmetry cannot be ferroelectric, since such

a crystal must have p = −p. The lack of inversion symmetry in ferroelectric crystals also

allows such crystals to display piezoelectricity. A piezoelectric material is one where a me-

chanical stress can induce electric polarization. Piezoelectricity in a material is defined by
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Figure 2.2: The cubic perovskite structure has three crystallographic sites: the A site, at the
corners of the unit cell, the B site, at the center, and the X site, on the faces of the cube.

its piezoelectric tensor, d [32], a third-rank tensor which relates the electric displacement D,

a first-rank tensor, to the strain σ via

Dk = dkijσij

Most elements of dkij will be zero even in strongly piezoelectric materials due to the sym-

metry. For the materials considered here, the d33 component alone (note that the index k

is a dummy index), relating a strain parallel to the direction of the applied field, is a good

metric for the piezolectric behavior of a material.

Many widely-used ferroelectric materials share a perovskite crystal structure; the lead-

based relaxor ferroelectrics (PBRF’s) considered in this work are all perovskites. The pero-

vskite structure has a simple chemical formula, ABX3, with cations occupying the A and B

sites and anions (usually but not always oxygen atoms) occupying the X sites (Fig. 2.2).

The simplicity of the perovskite structure is at odds with the complex range of behaviors

present in ferroelectric perovskite oxides. The first such material discovered, BaTiO3, does

have a paraelectric cubic phase at high temperature. Rather than a single ferroelectric phase
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Figure 2.3: Above TC , lead titanate has an undistorted cubic perovskite structure. Below
TC , one side of the unit cell expands relative to the other two and atoms leave their high-
symmetry positions, leading to a net polarization.

below TC , however, it has multiple phase transitions between distinct ferroelectric phases [7],

indicating a more complex picture of ferroelectricity than the simple model proposed above.

A simpler example of a ferroelectric perovskite is lead titanate, PbTiO3, abbreviated to

PTO. PTO is paraelectric and cubic above TC = 763 K [33]. Upon cooling below Below TC ,

PTO develops ferroelectricity, as atoms leave high-symmetry positions. One axis of the unit

cell lengthens with respect to the other two, making the unit cell tetragonal (Fig. 2.3). The

large ratio c/a ≈ 1.07 [34] makes single crystals of PTO prone to cracking upon structural

transitions.

Another class of material is the relaxor, best understood in contrast to a ferroelectric.

A relaxor does not generate a bulk polarization if sufficiently cooled, but it does have a

similar anomaly in its dielectric constant ε around a certain temperature. In contrast to

a ferroelectric material, where the anomoly in ε is sharp in temperature around TC , in

relaxors, this anomaly is broad in temperature around a peak value at temperature Tm(f)

and dependent upon the frequency (f) used to test the dielectric response [35]. One could
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Figure 2.4: (a) A classic ferroelectric with a Curie temperature TC has a sharp, frequency-
independet anomaly in permittivity ε. By contrast, a relaxor (c) has a broad anomaly in
ε;the temperature Tm(f) at which ε is peaked is temperature dependent. These behaviors
can be mixed (b). Figure adapted from [36]. c©2006 The Physical Society of Japan.

quantify the degree of relaxational character in a material by comparing the change in

Tm(f) with frequency; the larger the change, the more relaxational the character of the

material. Measurements of optical refractive index in relaxors show evidence for local polar

distortions where there is no bulk polarization [8]; this local polar behavior can persist

up to a temperature Td, called the Burns temperature. This indicates that relaxors, like

ferroelectrics, have a local polar structure; unlike ferroelectrics, this local order does not

persist across the bulk of a sample.

If there is a canonical relaxor, it is PbMg1/3Nb2/3O3, referred to as PMN [4,37]. PMN is

also a perovskite oxide, but has two possible B site occupants, Mg2+ and Nb5+. PMN retains

its high-temperature cubic structure when cooled, but displays an increasing Debye-Waller

factor as temperature decreases [38]; as this is not due to increasing thermal excitement, it

likely indicates increasing deviation of atoms from equilibrium sites unrelated to the popu-

lation of phonons.
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2.2 PMN-xPT and Related Systems

Numerous relaxor and ferroelectric systems are found among perovskites oxides with

lead on the A sites; such a material is referred to as lead-based relaxor ferroelectric (PBRF).

PTO and PMN share a perovskite structure and many of the same constituent atoms, only

differing in the atom occupying the B site at the center of the O6 octahedra. The two

materials can be mixed in a solid solution with PTO fraction x, most correctly named

(1-x)PbMg1/3Nb2/3O3-xPbTiO3. This is frequently shortened to PMN-xPT, with x as a

percentage PTO (e.g, 0.7PbMg1/3Nb2/3O3-0.3PbTiO3 is referred to as PMN-30PT); this

work will use this convention.

PMN-xPT is something of a model system for relaxor ferroelectrics, with a rich struc-

tural and behavioral dependence on temperature and concentration. Near the extremes of

concentration, the system predictably behaves like the nearest end member. However, near

x = 0.3, the system exhibits new behavior. There is no sharp first-order phase transition

from a PMN-like system to a PTO-like system. Instead, the system displays entirely different

behavior over a range of x. This wide intermediate region is referred to as the morphotro-

pic phase boundary (MPB). Near the MPB, the piezolelectric properties of the system are

greatly enhanced, with d33 orders of magnitude above that of the end members.

Fig. 2.5(a) illustrates our current understanding of how the average symmetry, which

governs the long-range polar (ferroelectric) order of single crystal PMN-xPT, evolves with

composition and temperature [39]. The low-temperature structure transforms from non-

ferroelectric, cubic symmetry at x = 0 [38, 41] to highly-strained ferroelectric, tetragonal

symmetry at x = 100 via two different monoclinic space groups: Cm (which is nearly

indistinguishable from rhombohedral R3m) and Pm.
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Figure 2.5: (a) The structure of PMN-xPT has a significant dependence on doping and
temperature, with different kinds of probes sometimes showing different structures in the Ti-
poor relaxor region. Figure adapted from [39]. (b) Piezoelectric coefficient d33 as a function of
doping. d33 is maximized near the morphotropic phase boundary. (c) Relaxational character
of PMN-xPT as a function of x. Data was collected and adapted from [40].
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Relaxational properties also display a range of behavior across the phase diagram of

PMN-xPT. PMN (x = 0) is generally discussed as a canonical ‘relaxor,’ a material that

is distinguished by an unusually broad and rounded maximum in dielectric permittivity at

a strongly frequency-dependent temperature Tmax [4, 37]. The frequency-dependent shift

in Tmax, defined as ∆Tmax = Tmax(106 Hz) − Tmax(102 Hz), is approximately 24 K for

PMN [40, 42]. However, as first elucidated by Grinberg et al. [40] and reproduced in Fig.

2.5(c), ∆Tmax, and hence the diffusive character, gradually vanishes with x as the system

changes from relaxor-like to ferroelectric-like. Most importantly, the relaxor character di-

sappears at approximately the same composition at which the MPB is reached and where

the electromechanical response is maximal. The compositional dependence of the piezoelec-

tric coefficient d33, which relates the strain to an applied electric field, is adapted from [43]

and presented in Fig. 2.5(b); this shows that the electromechanical properties are poor for

both end-members but anomalously large close to the monoclinic Pm phase that borders

the tetragonal phase at a morphotropic phase boundary (MPB) near x ≈ 30. Distinguishing

between these two properties and discovering how they are linked to each other remains an

important question in understanding PMN-xPT.

A frequently employed model for relaxor behavior consists of nano-scale ferroelectric

domains, or polar nanoregions (PNR) [4, 8, 44–46] that are embedded in a non-ferroelectric

matrix, and it has been argued that these PNR strongly influence the dielectric permittivity

[47, 48] and enhance the electromechanical properties [49–51]. However, this ‘raisins-in-the-

cake’ picture is inconsistent with competing models that instead implicate a large number of

low-energy domain walls arising from nanoscale variations in the polar displacement vectors

[52,53]. Other researchers have highlighted the importance of chemical short-range order [54],

competing antiferroelectric and ferroelectric interactions [55], or contrasting ferroelectric

tendencies of different cations occupying crystallographically equivalent sites [56] - all of

which influence local atomic displacements and material properties. PBRFs thus represent a
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valuable platform for testing new experimental methodologies being developed to determine

local order and correlate it to material performance.

2.3 Diffuse Scattering from PMN-xPT and Proposed Models

Diffuse scattering, measured in neutron and x-ray scattering experiments, is the classic

signature of local ordering in materials, and it has been well-documented in PBRFs. The

diffuse scattering that has attracted the most attention by far is the ”butterfly” scattering

surrounding Bragg peaks. This is generally characterized as rod-like, centered at Bragg

reflections, and oriented along 〈110〉 [4,45,57,58], forming butterfly-shaped patterns around

h00 peaks, ’cigar’-shaped patterns around hh0 peaks, and some mixture of the two around

other peaks. This ‘butterfly’-shaped diffuse scattering has been associated with ferroic order,

relaxor behavior, or both [59, 60]. This scattering can be affected by an applied electric

field [61], strongly indicating a connection to ferroic properties. As yet, there is still no

consensus in the literature on a correct physical interpretation of the underlying local order

or how it influences material properties. Models of this feature have been based on PNR

[45,58,62–65], oriented polar domain walls [66], polar correlations between chemically-ordered

nanoregions [54], Huang scattering [67], thermal-like diffuse scattering [68], or a homogeneous

random network of anisotropically coupled dipoles [69]. Diffuse scattering is also observed

at high temperature [63] without being well-characterized; it has been noted that the low-

temperature scattering fits into the high-temperature scattering as a lock into a key.

In addition, diffuse scattering centered on the M points 1
2
(2h+1, 2k+1, 2l) (see Fig. 1.2)of

the Brillouin zone boundaries has been observed in PMN and attributed to antiferrodistortive

displacements of Pb cations [70]. Unusual neutron inelastic scattering from highly-damped

phonons is observed at these M points and has been attributed to soft antiferroelectric
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modes [71] that soften to produce broad elastic peaks at low temperature. Diffuse peaks

centered on the R points 1
2
(2h+ 1, 2k + 1, 2l + 1) have also been reported; these have been

attributed to ordering of Mg2+ and Nb5+ ions [70, 72].

Without energy resolution, diffuse scattering can reflect both static and dynamic dis-

placements within the lattice; as both types are relevant in PMN-xPT in different regimes,

this can lead to considerable confusion. It is noteworthy that diffuse scattering from PMN-

xPT increases with decreasing temperature, and neutron spin echo experiments have shown

this scattering to be elastic [73]. While there are many interesting dynamics in PMN-xPT

relating to soft phonon modes, the low-temperature structure and diffuse scattering is rela-

ted to static displacements. Further complicating interpretation of diffuse scattering from

PMN-xPT is evidence of a skin effect [74], whereby scattering from these materials shows a

marked dependence on the incident energy of the scatterer. This suggests that the surface

of these materials may behave differently from the bulk, making it important to determine

if experiments are providing a true average of the material.



CHAPTER 3

DIFFUSE SCATTERING FROM PMN-xPT

Despite the significant body of work already produced on PMN-xPT, many fundamental

questions about the system remain unresolved. Given the likely role of short-range order and

local correlations in the system, it is natural to apply modern methods of measuring diffuse

scattering to PMN-xPT. These methods (outlined in Chapter 1.3) provide both a larger,

more complete picture of scattering from a given composition at a given temperature and

sufficient throughput to obtain these pictures at many different compositions and tempera-

tures. By tracking diffuse scattering and how it changes with temperature and composition,

it can be linked to bulk properties, thus showing the connection between various forms of

local order and their effects on bulk materials. A phase diagram of PMN-xPT is shown in

Figure 3.1 with markers placed for the different scattering experiments performed.

Table 3.1: PMN-xPT crystals measured for neutron diffuse scattering using Corelli, with
actual compositions determined by prompt gamma activation analysis (PGAA).

Crystal Mass (g) Nominal %Ti Actual % Ti

PMN 0.651 0 0
PMN-20PT 1.02 20 21.7
PMN-30PT 0.725 30 28.8
PMN-35PT 0.136 35 33.0
PMN-40PT 0.638 40 39.8
PMN-50PT 0.275 50 48.5

Material is this chapter has been adapted with permssion from [27].
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Figure 3.1: Diffuse scattering from PMN-xPT was measured at a variety of Ti concentrations
and temperatures spanning the phase diagram.

3.1 Neutron Scattering Experiments

Neutron diffuse scattering measurements were made on a series of PMN-xPT crystals

using the instrument Corelli at the Spallation Neutron Source. The crystals ranged in total

mass from 0.136 g to 1.01 g; to normalize the scattering among the different crystals, each was

measured using Corelli with the incident beam shutters completely open so as to completely

bathe the crystal in the incident beam. Bragg intensities from this measurement were then

taken and normalized to measured mass to establish relative Bragg intensity per scatterer

for each crystal; normalization factors for diffuse scattering data were then extrapolated

from Bragg peaks and applied to the diffuse scattering data sets. Data were processed in

MANTID using Corelli’s cross-correlation algorithm, which ensured that inelastic scattering

is filtered out. Prompt gamma activation analysis (PGAA) was performed at the NIST

Center for Neutron Research to determinue the actual composition of each sample; as shown
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Figure 3.2: Diffuse scattering from PMN at 6 K, shown in the l = 0 (left) and l = 1 (right)
planes.

in Table 3, actual Ti concentration was close to the nominal concentration for each sample,

and samples will be referred to by their nominal concentration for the remainder of this

work.

3.1.1 PMN

A sample of pure PMN with mass 0.67 g was examined at 6 K and again at 300 K, with

about 8 hours of measurement over an angular range of 120◦. The sample was mounted on

a small aluminum post using superglue, limiting maximum temperature; this post was itself

masked using cadmium. Given the low Tm(f) of ≈220 K for PMN, this was thought to be

sufficient to capture two different areas of behavior.

At 6 K, examination of the l = 0 and l = 1 (Fig. 3.2) planes show significant diffuse

scattering surrounding each Bragg peak. This scattering emanates from the central peak

along 〈110〉 directions. Compared to the data found in previous neutron scattering studies,
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Figure 3.3: Diffuse scattering from PMN at 6 K, shown in the h = 2.5 (left) and h = 3.5
(right) planes.

there is an obvious asymmetry between the low-|Q| and high-|Q| diffuse scattering around

some of the Bragg peaks. Also visible in the l = 0 and l = 1 planes are broad peaks at

certain M points in the Brillouin zone. These peaks are better visualized in the l = 2.5 and

l = 3.5 planes (Fig. 3.3), where they can be seen alongside slightly sharper peaks on the R

points.

Later analysis raised questions about the behavior of certain components of diffuse scat-

tering at higher temperatures. To this end, further experiments were performed with the

sample affixed to an aluminum plate with aluminum wire and surrounded by an aluminum

heat shield. The additional aluminum background was necessary to achieve higher tempera-

tures and keep the sample stable at these temperatures. In this configuration, scattering was

measured at 300 K, 450 K, 600 K, and 700 K. These higher-temperature measurements used

less time and covered less of reciprocal space than the previous measurements, but important

information regarding specific, localized features was still extracted from these datasets.
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Higher-temperature scans covered less reciprocal space but show the clear suppression

of the scattering around the Bragg peaks (Fig. 3.4 (a-d)), as well as the scattering near M

points (Fig. 3.4 (e-h)). Some R points appear relatively unchanged from 300 K to 700 K,

while others become less intense (this is further discussed in Ch. 3.3.4).

3.1.2 PMN-20PT

A sample of PMN-xPT with nominal x = 0.2 and total mass 1.01 g was measured at 6 K.

The sample was suspended from an aluminum post with a binary epoxy allowing for higher-

temperature measurements, with the post shielded by a band of gadolinium. While large,

this sample consisted of a main crystal and a few smaller crystallites. The normalization

factor for this sample was further corrected by comparing the intensity of Bragg peaks from

the main sample to that of its crystallites; 84% of the total Bragg intensity coming from the

main peak, and the effective mass of this sample is considered to be 0.84 g for the purpose

of normalization. While data from this sample is of sufficient quality to highlight overall

trends, more detailed modelling would require an impractical amount of data correction.

Comparing diffuse scattering from PMN-20PT to the diffuse scattering from PMN reveals

a few obvious changes. As seen in Fig. 3.5, the extended ‘butterfly’ shapes centered on

Bragg peaks are more concentrated to the zone center in PMN-20PT and do not extend as

far across the Brillouin zone as they do in PMN. Similar asymmetry between low-|Q| and

high-|Q| halves is observed, but manifests differently around different peaks – for example,

the 300 peak appears mostly symmetric in PMN but has much more intensity on the low-|Q|

side in PMN-20PT. Scattering at the M and R points is almost impossible to discern by eye

in these images; while later analysis will show that small remnants of these peaks can be

found, they are indeed greatly suppressed for this sample compared to PMN.
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Figure 3.4: Diffuse scattering from PMN at 300 K, 450 K , 600 K, and 700 K, shown in the
l = 0.0 (panels (a-d)) and l = 0.5 (panels (e-h)) planes.
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Figure 3.5: Diffuse scattering from PMN-20PT at 6 K, shown in the l = 0 (left) and l = 1
(right) planes.

A new feature between the Bragg peaks is clear in this data – very broad scattering

spanning the space between certain zone centers, e.g. the 300 and 400. This scattering is

best viewed in half-integer planes as in Fig. 3.6. The strong M point scattering observed

in PMN is weakened and coincides with this broad scattering, showing up on the corners

of the diamond-like shapes formed in the half-integer planes; this feature is thus roughly

octahedral in three dimensions, at least in Brillouin zones close to 〈h00〉. The R point

scattering is almost gone entirely.

3.1.3 PMN-30PT

Diffuse scattering from a sample of PMN-xPT with nominal x = 0.3 and mass 0.725 was

measured using Corelli at three temperatures: 6 K, the base temperature for Corelli using the

CCR; 390 K, close to the paraelectric transition temperature for this composition; and 470

K, well above the transition temperature. The sample was mounted with high-temperature
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Figure 3.6: Diffuse scattering from PMN-20PT at 6 K, shown in the h = 2.5 (left) and
h = 3.5 (right) planes.

epoxy on an aluminum pin; a boron nitride shield removed any scattering from the pin at

the expense of adding a weaker background of its own. This sample has a Ti concentration

placing it close to the morphotropic phase boundary and thus has a strongly enchanced d33.

At 6 K, examination of the l = 0 and l = 1 planes shows a continuation of the trend from

PMN to PMN-20PT. Diffuse scattering around the Bragg peaks appears more concentrated

near q = 0, and superlattice reflections are not clearly visible in these planes. As in PMN-

20PT, broad scattering spans the region of reciprocal space between certain zone centers;

this scattering is particularly visible in the l = 2.5 and l = 3.5 planes (Fig. 3.8). Scattering

at the M point is still visible at the corners of the ‘diamonds’ in these planes.

With the temperature increased to 470 K, which is above TC , the concentrated scattering

around the Bragg peaks is weakened considerably (Fig. 3.9). While the broad scattering

between Bragg peaks remains visible (Fig. 3.10), the M point peaks on corners are suppressed

entirely. The broad scattering itself appears mostly unchanged, particularly in zones close to
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Figure 3.7: Diffuse scattering from PMN-30PT at 6 K, shown in the l = 0 (left) and l = 1
(right) planes.

Figure 3.8: Diffuse scattering from PMN-30PT at 6 K, shown in the h = 2.5 (left) and
h = 3.5 (right) planes. These data have been symmetrized to fill gaps in coverage and better
portray the pattern of scattering.
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Figure 3.9: Diffuse scattering from PMN-30PT at 470 K, shown in the l = 0 (left) and l = 1
(right) planes.

〈h00〉, with some minor details appearing to change and the feature itself becoming slightly

less distinct.

3.1.4 PMN-35PT

A sample of PMN-xPT with nominal x = 0.35 and mass 0.136 g was measured at 6 K.

This sample used the same gadolinium-masked mount as the x = 0.2 sample. The measured

Ti concentration of this sample places it within the MPB (see Fig. 3.1).

Trends of changes in the diffuse scattering observed in previous samples are continued

here. The scattering near Bragg peaks continues to appear more concentrated toward q = 0,

and little remnant of the M-point scattering can be seen, while the broad, zone-spanning

scattering continues to be prominent. Unfortunately, scans at higher temperatures were not

completed for this sample.
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Figure 3.10: Diffuse scattering from PMN-30PT at 470 K, shown in the h = 2.5 (left) and
h = 3.5 (right) planes. These data have been symmetrized to fill gaps in coverage and better
portray the pattern of scattering.

Figure 3.11: Diffuse scattering from PMN-35PT at 6 K, shown in the l = 0 (left) and l = 1
(right) planes.
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Figure 3.12: Diffuse scattering from PMN-35PT at 6 K, shown in the h = 2.5 (left) and
h = 3.5 (right) planes.

3.1.5 PMN-40PT

A sample of PMN-xPT with nominal x = 0.40 and mass 0.638 g was measured at 6 K

and 475 K. This sample used the same gadolinium-masked mount as the x = 0.2 sample.

This sample is clearly on the Ti-rich, ferroelectric side of the phase diagram, so some

change is diffuse scattering is expected. Observation of the l = 0 and l = 1 planes (Fig. 3.13)

at 6 K show that the scattering around the Bragg peak is now suppressed. As the system

is now tetragonal at low temperature, there is some indication of Bragg peak splitting due

to the presence of three different tetragonal orientations. The broad scattering between the

Bragg peaks is still present, and is particularly noticeable in the h = 2.5 and h = 3.5 planes

(Fig. 3.14).

At 475 K, which is above TC for this composition and where the sample is in a cubic,

paraelectric state, the Bragg peaks are sharp and unsplit (Fig. 3.15). However, the broad

scattering between Bragg peaks remains (Fig. 3.16). Background is actually diminished
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Figure 3.13: Diffuse scattering from PMN-40PT at 6 K, shown in the l = 0 (left) and l = 1
(right) planes.

Figure 3.14: Diffuse scattering from PMN-40PT at 6 K, shown in the h = 2.5 (left) and
h = 3.5 (right) planes.
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Figure 3.15: Diffuse scattering from PMN-40PT at 475 K, shown in the l = 0 (left) and
l = 1 (right) planes.

at high temperature; this may be a result of background sources producing more inelastic

and less elastic scattering and thus more of the background being filtered out by Corelli ’s

cross-correlation chopper.

3.1.6 PMN-50PT

A sample PMN-xPT with nominal x = 0.50 and mass 0.235 g was measured at 6 K and

480 K. This sample used the same gadolinium-masked mount as the x = 0.2 sample.

At 6 K, the diffuse scattering features strongly suppressed in PMN-40PT are now com-

pletely gone. At low temperature, no butterfly scattering or peaks at M or R points can

be observed at all (Fig. 3.17), although the broad scattering centered on zone boundaries

remains (Fig. 3.18). Bragg peaks are both split into tetragonal domains and strongly distor-

ted, with the peaks both split in Q and extended along the rocking curves, a likely result of
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Figure 3.16: Diffuse scattering from PMN-40PT at 475 K, shown in the h = 2.5 (left) and
h = 3.5 (right) planes.

different ferroelectric domains being present in the crystal and the strong strain that must

exist at the boundaries between these domains.

At 480 K, relatively narrow Bragg peaks are observed (Fig. 3.19), as the sample is now

above TC and in a cubic phase. Similar to PMN-40PT, the broad zone-boundary-centered

scattering remains visible (Fig. 3.20), though a reduced background reduces the absolute

intensity in areas covered by this broad scattering, making this feature appear weaker but

clearer at high temperature.

3.2 X-ray Scattering Experiments

As a complement to the neutron measurements, x-ray diffuse scattering from PMN and

PMN-30PT was measured at beamline A2 of CHESS using the continuous rotation method

outlined in Chapter 1.3. Previously published x-ray and neutron measurements of diffuse

scattering were largely harmonious, reporting very similar diffuse scattering features around
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Figure 3.17: Diffuse scattering from PMN-50PT at 6 K, shown in the l = 0 (left) and l = 1
(right) planes.

Figure 3.18: Diffuse scattering from PMN-50PT at 6 K, shown in the h = 2.5 (left) and
h = 3.5 (right) planes.



56

Figure 3.19: Diffuse scattering from PMN-50PT at 480 K, shown in the l = 0 (left) and
l = 1 (right) planes.

Figure 3.20: Diffuse scattering from PMN-50PT at 480 K, shown in the h = 2.5 (left) and
h = 3.5 (right) planes.
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a small number of low-|Q| Brillouin zones; x-ray scattering data covering the features newly

observed with neutron scattering provide a valuable contrast. X-ray and neutron diffuse

scattering have different scattering factors: for x-rays, the scattering length for each element

is mostly proportional to Z, the atomic number, and decays with increasing |Q|; for neu-

trons, the scattering length is not correlated to Z. This difference in contrast between the

two scatterers emphasizes different correlations. X-ray scattering will be dominated by con-

tributions from Pb atoms, while neutron scattering will be more sensitive to lighter elements

such as oxygen (Tab. 3.2).

Table 3.2: The contrasting scattering lengths for neutrons and x-rays produces a contrast
between diffuse scattering seen between the two experiments. Particularly noteworthy is the
large discrepency between ZPb/ZO = 10.25 and bPb/bO = 1.62, making neutron scattering
much more sensitive than x-ray scattering to the position of oxygen atoms relative to lead
atoms. Values taken from [75]

Element Z b

O 8 5.803
Pb 82 9.405
Mg 12 5.375
Nb 41 7.054
Ti 22 -3.438

Small crystals were removed from the large PMN and PMN-30PT crystals examined with

neutrons for diffuse x-ray scattering experiments. To avoid the surface effects indicated by

other studies [76], x-ray samples were etched in hydrochloric acid at 350 K for 60 minutes

prior to being mounted on kapton capillaries with binary epoxy. To ensure x-rays penetrated

the bulk of the sample, an incident beam energy of 56.8 keV (λ = 0.218Å) was used. This

high incident energy produces artifacts in the Si-based detector as discussed in Ch. 1.3.
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Figure 3.21: Diffuse x-ray scattering from PMN at 100 K, shown in the l = 0 (left) and l = 1
(right) planes.

3.2.1 PMN

A sample of PMN was measured at 100 K, 200 K, 300 K and 400 K; as seen in Fig. 3.1,

these temperatures are both above and below Tm(f) ≈ 220K.

As seen in Figs. 3.21 and 3.22, many of the features identified in the neutron picture

can be seen in the x-ray diffuse scattering at 100 K as well. The ’butterfly’ scattering

surrounding each Bragg peak is easily seen, in some cases extending all the way to the M

point. Scattering from half-integer planes clearly reveal broad peaks on M and R points, and

a quite broadly-varying background can be seen as well, similar to that seen with neutron

scattering for compositions with 20% titanium and above; reexamination of the neutron

scattering data show that this scattering is also present in PMN, while much weaker than

it is for other samples. This feature is thus the only one present for all compositions of

PMN-xPT measured, and is indeed present at all temperatures as well.
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Figure 3.22: Diffuse x-ray scattering from PMN at 100 K, shown in the l = 2.5 (left) and
l = 3.5 (right) planes.

Raising the temperature to 400 K brings similar changes to diffuse x-ray scattering from

PMN as it does to diffuse neutron scattering. The butterfly scattering close to Bragg peaks

diminishes in intensity and sharpness compared to lower temperature, the M point peaks

are greatly weakened, and the R point peaks seem relatively unaffected.

3.2.2 PMN-30PT

Two samples of PMN-30PT were measured at 100 K, 200 K, 300 K, and 400 K; all

temperatures are below TC for this sample. Data from only one sample is shown, but the

two show consistent pictures of diffuse scattering.

As seen with neutrons, the addition of titanium to PMN changes diffuse scattering consi-

derably. At low temperature, the spatial extent of the diffuse scattering surrounding Bragg

peaks is reduced, with this scattering appearing more concentrated around the Bragg peaks.

The broad peaks at M and R points are no longer visible, but the broad scattering spanning
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Figure 3.23: Diffuse x-ray scattering from PMN at 400 K, shown in the l = 0 (left) and l = 1
(right) planes.

Figure 3.24: Diffuse x-ray scattering from PMN at 400 K, shown in the l = 2.5 (left) and
l = 3.51 (right) planes.
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Figure 3.25: Diffuse x-ray scattering from PMN-30PT at 100 K, shown in the l = 0 (left)
and l = 1 (right) planes.

Brillouin zones appears stronger. This scattering is considerably better resolved with the

x-ray measurements than with the neutron measurements, and can now be clearly seen to

consist of diffuse octahedra, alternating in intensity in a checkerboard-like pattern throug-

hout reciprocal space and increasingly distorted as the region of reciprocal space gets farther

away from 〈100〉 directions. Interestingly, the faint hint of the M point peaks seen with neu-

tron scattering is absent in the x-ray picture, an indication of contrast between the scatterers

of the different features.

The highest temperature for PMN-30PT surveyed with x-rays was 400 K, lower than the

470 K achieved during the neutron measurements and ambiguously close to the presumed

TC ≈ 410 K for this sample. As with other samples, higher temperatures make the zone-

centered diffuse scattering less apparent, while leaving the broad zone-spanning features

more intact.
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Figure 3.26: Diffuse x-ray scattering from PMN-30PT at 100 K, shown in the l = 2.5 (left)
and l = 3.5 (right) planes.

Figure 3.27: Diffuse x-ray scattering from PMN-30PT at 400 K, shown in the l = 0 (left)
and l = 1 (right) planes.
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Figure 3.28: Diffuse x-ray scattering from PMN-30PT at 400 K, shown in the l = 2.5 (left)
and l = 3.51 (right) planes.

3.3 Components of Diffuse Scattering

A brief overview of the compositional dependence of each distinct feature of diffuse scat-

tering found in the data will follow, after which each component will be discussed in detail.

Fig. 3.29 shows trends in the bulk properties of PMN-xPT alongside trends in the various

diffuse scattering components.

The first component considered will be the so-called ‘butterfly’ diffuse scattering sur-

rounding Bragg peaks, concentrated around q = 0. This component, the main focus of most

previous studies of diffuse scattering from PMN-xPT, is apparent in samples from x = 0 to

x = 0.35 but not in more Ti-rich samples. Previous studies have shown that this component

changes significantly under applied electric fields; as such, this work will refer to this feature

as ferroic diffuse scattering or C1 scattering in PMN-xPT. The intensity of this compo-

nent close to q = 0 is correlated with the piezoelectric tensor component d33 and thus the

electromechanical coupling of the material.
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Figure 3.30: Reciprocal space maps of neutron scattering intensities measured on Corelli at
6 K. Data are shown in the l = 0, 1, 2.5, and 3.5 planes in panels (a), (b), (c), and (d) for
x = 0.0 and (e), (f), (g), and (h) for x = 0.3, respectively. Data have been integrated over
a range in l of 0.06 r.l.u. Four different diffuse scattering features, as discussed in the text,
are indicated with colored circles: C1 with red, C2 with white, C3 with magenta, and C4
with yellow. Intensity scales are logarithmic.
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The second component considered will be the somewhat oblong diffuse peaks centered

on M points 1
2
(2h + 1, 2k + 1, 2l) in the Brillouin zone. These are most clearly apparent in

PMN, but they are also resolvable in PMN-20PT and PMN-30PT as ‘shoulders’ on another

component (C4, to be discussed later). These peaks have strong temperature dependence and

have been connected by previous studies to antiferroelectric interactions. This component of

diffuse scattering will be referred to as C2, and its intensity is correlated with the relaxational

character of the sample.

The third component considered will be the diffuse peaks centered on R points of the

Brillouin zone 1
2
(2h+1, 2k+1, 2l+1). These are again most apparent in pure PMN, with some

small trace remaining for Ti concentrations up to x = 0.3. The temperature dependence

of this scattering shows a contribution similar to C2 and another, temperature-independent

component indicative of short-range chemical ordering of Mg and Nb atoms. This scattering

will be referred to as C3.

The fourth and final component considered is perhaps the most apparent in the figures

shown: broad scattering between Bragg peaks that alternates in intensity between zones,

forming pseudo-octahedra centered on X points along the 〈h00〉 directions. This scattering

is apparent in previous studies, but it had not been clearly identified as a component separate

from others. It is only weakly temperature-dependent in the region studied and increases in

intensity as Ti concentration increases, at least up to x = 0.5. It is caused by a tendency of

Pb atoms to be closer than average to Mg and Ti atoms and farther away from Nb atoms.

This can thus be considered a size effect, although the origin may not be strictly related

to the effective radius of the cation. While this scattering does not appear to be directly

related to any bulk physical properties, its presence is important to recognize, as it can

easily confound measurements of C1 and C2, and it may be indicative of the strong local

interactions necessary for a random-field model of relaxor ferroelectrics. This scattering will

be referred to as C4.
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3.3.1 C1 : Ferroic Scattering

As discussed in Chapter 2.3, most previous studies on diffuse scattering in PMN-xPT

have focused on areas close to Bragg positions. The ‘butterfly’ appellation is a bit imprecise;

while this diffuse scattering somewhat resembles a butterfly around certain 〈h00〉 Bragg

peaks, other 〈h00〉 peaks may show a strong imbalance between the wings, particularly

with neutron scattering, and the scattering around 〈hh0〉 peaks displays only one rod along

the perpendicular 〈hh0〉 direction. These significant details and the array of different local

distortions in other systems that can give rise to such a ‘butterfly’ shape (Huang scattering

in bilayer manganites, etc.) are at odds with the uncertainty of the local displacement

correlations that must give rise to this feature; this work will thus refer to this component

as ferroic diffuse scattering, or C1.

Both neutron and x-ray experiments confirmed the presence of this feature around every

Bragg peak surveyed. In a clear difference from previous studies, neutron scattering clearly

indicate inter-zone intensity modulations to C1. Specifically, if the Miller indices hkl of a

Bragg peak are all odd or all even, then C1 is stronger on the high-|Q| side of the Bragg peak;

otherwise, the scattering is stronger on the low-|Q| side. This rule holds for all Brillouin zones

and is most easily visualized along 〈h00〉, where successive zones have diffuse intensities that

alternate between strong high-|Q| and strong low-|Q|. A broader view of scattering shows

the universality of these modulations – Fig. 3.31 shows an hhl scattering plane from PMN-

30PT, and the rule can be seen to hold even for the weaker lobes emanating along 〈110〉 for

hhl peaks.

Most previous neutron studies have focused on a small number of mainly low-|Q| Bril-

louin zones and were thus unable to identify this asymmetry [57, 62, 63, 78]. While it is

not surprising that this feature had not been appreciated in previous neutron scattering
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Figure 3.31: Figure 3. Diffuse neutron scattering from PMN-30PT shown in the hhl scat-
tering plane. While the C1 scattering components are weak in this plane, the asymmetry
between low-|Q| and high-|Q| is apparent, with peaks of all even or all odd indices showing
more C1 intensity on the high-|Q| side and other peaks with more C1 intensity on the
low-|Q| side.

measurements, in retrospect it is recognizable in previous reports on PMN and related sys-

tems [24,57,79–81]. However, it is surprising that this intensity modulation was not reported

in previous synchrotron x-ray studies, as synchrotron x-ray sources typically provide access

to a much larger |Q|-range. We therefore carried out complementary x-ray scattering expe-

riments (Fig. 3.32 shows x-ray scattering intensity maps measured on pieces taken from the

same crystals in the same planes as shown for neutrons in Fig. 3.30). Fig. 3.33 compares

the diffuse scattering surrounding the 400 Bragg peak for x = 0.3 in the l = 0 plane for

x-rays (Fig. 3.33(a)) and neutrons (Fig. 3.33(d)), and it appears that the low-|Q| and high-

|Q| intensities are much closer to equal for x-rays than for neutrons. This is confirmed by

examination of the (3.9, k, l) and (4.1, k, l) planes, which illustrate the distribution of C1 on

the low-|Q| and high-|Q| sides of 400, respectively for both x-rays (Fig. 3.33(b) and (c)) and

neutrons (Fig. 3.33(e) and (f)). The large difference in intensity between the low-|Q| and



69

high-|Q| diffuse lobes measured with neutrons around this peak does not match the nearly

equal intensity distribution of the same diffuse lobes measured with x-rays. For peaks of all

even or all odd Miller indices, the C1 intensity is close to symmetric when measured with

x-rays; for peaks of mixed even and odd indices,the same asymmetry observed with neutrons

is observed with a less extreme difference in intensity with x-rays.

The large penetration depths of both the neutrons and the high-energy x-rays used in

our study ensure that both probes sampled the bulk of the crystals, so the observed dif-

ference is not due to a skin effect [39, 74, 82]. Moreover, the low-|Q|/high-|Q| inter-zone

modulations described above are present in both the elastic and energy-integrated neutron

cross-sections, which indicates that this difference between neutron and x-ray data is not due

to the integration of low-lying phonon modes in the x-ray experiments and that this feature

is static in origin. Thus, the observed differences are intrinsic and result from differences in

diffuse scattering structure factors due to the disparate scattering lengths of the constituent

atoms for these two probes. Scattering from x-rays is dominated by the heavy Pb cations,

neutrons are much more sensitive to O anions. Calculations of Bragg structure factors de-

monstrate the influence of O in tetragonal, Ti-rich compositions where similar modulations

can occur. This clearly demonstrates that correlated O displacements play a significant role

in C1. This is further bolstered by the intensity rule of the interzone modulation, which

indicates a ‘halving’ of the unit cell consistent with the Pb-O distance.

The inter-zone modulation of C1 is similar to the pattern of Bragg peak splitting due to

domain formation in PMN-xPT on the tetragonal side of the MPB, as seen with PMN-50PT

in Fig. 3.34. Below TC , all cubically indexed h00 and hh0 peaks split due to the tetragonal

distortion. Because of the unique c-axis which is larger than the a-axis, both 〈h00〉 and 〈0h0〉

reflections will contribute to a peak with a lower d-spacing than the single 〈00h〉 peak with

higher d-spacing, leading to a difference in intensity between the split peaks of 2:1 before

the structure factor is considered. We observed that the higher-d reflections for the odd
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Figure 3.32: Reciprocal space maps of x-ray scattering intensities measured at CHESS at
100 K. Data are shown in the l = 0, 1, 2.5, and 3.5 planes in panels (a), (b), (c), and (d) for
x = 0 and (e), (f), (g), and (h) for x = 30%, respectively. Data have been integrated over a
range in l of 0.06 r.l.u.
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Figure 3.33: Diffuse scattering patterns in the 400 Brillouin zone for x=30. (a-c) (h, k, 0),
(3.9, k, l) and (4.1, k, l) planes measured at 100 K with x-rays. (d-f) (h, k, 0), (3.9, k, l) and
(4.1, k, l) planes measured at 6 K with neutrons. The (3.9, k, l) and (4.1, k, l) planes show
the lobes of scattering in the planes perpendicular to the (h, k, 0) plane as marked in panels
(a) and (d). Data have been integrated in the normal direction over a range of 0.02 rlu.
Intensity scales are logarithmic. Black bars in (a-c) indicate regions where reliable data were
not collected.
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〈h00〉 peaks and the lower-d reflection for the even 〈hh0〉 peaks are actually stronger, with

the weaker reflection almost entirely suppressed in some cases; this is a direct result of the

neutron structure factor being more influenced by lighter atoms. This disparity is lessened,

though not eliminated, for x-ray scattering; a comparison of neutron scattering data to

calculated structure factors is shown in Fig. 3.34. Though this does not necessarily imply

that the local displacements behind C1 are identical to the long-range displacements in the

tetragonal phase, the C1 neutron structure factors are similarly influenced by lighter atoms,

suggesting correlated displacements involving lighter atoms are the source of the inter-zone

modulation. These structure factor calculations were made using the atomic positions in the

tetragonal unit cell for PMN-50PT from Kania et al. [34]

The calculation of C1 diffuse scattering was done by integrating scattering intensity along

a [110] cut through one of the diffuse lobes. As may be apparent from examination of this

scattering from different samples, the location of this cut has some effect on the compositional

dependence. Fig. 3.35 shows how changing the location of this cut changes this compositional

dependence. As the cut is taken farther and farther from q = 0, the relative strength of

scattering from morphotropic PMN-30PT and PMN-35PT samples diminishes with respect

to that from pure PMN. While caution in extracting correlation lengths from this sort of data

is advised, this change of reciprocal space extent is consistent with a picture of displacement

correlations having a shorter characteristic length in the relaxor PMN than in the Ti-alloyed

relaxor ferroelectrics.

While a specific atomic model of displacements is still elusive, a quick simulation of a

PMN crystal in DISCUS illustrates a toy model that can generate diffuse scattering with

similar features to those seen in C1, particularly with neutrons. Each oxygen atom is assigned

a type based on its two nearest neighbors, and Pb atoms are displaced depending on the

oxygen neighbors: toward those O atoms with two Mg neighbors, away from those with

two Nb neighbors, and with average distance towards those with one of each type. This
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Figure 3.34: Cuts through h00 peaks of tetragonal PMN-50PT, measured at 6 K. (a) Area
plot of scattering intensity of PMN-50PT. Note splitting of peaks. (b) Cut through Bragg
peaks showing experimental split intensity ratios. (c) Calculated neutron Bragg scattering
cut using published unit cell of PMN-50PT [34]. (d) Calculated x-ray scattering cut using
published unit cell of PMN-50PT. The vertical scale on (b-d) is logarithmic.
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Figure 3.35: Compositional dependence of the numerically integrated intensity of diffuse C1
as measured with neutrons at 6 K using different offsets from the 200 Bragg reflection. Here,
the cuts are made along the [110] direction with q = (δ, δ, 0), so that Q = (2 + δ, δ, 0).
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model produces diffuse scattering centered on Bragg peaks with all-even or all-odd Miller

indices and displays a marked discrepency between neutron and x-ray scattering. Neutron

scattering shows diffuse scattering mainly around Bragg peaks will all even or all odd Miller

indices; x-ray scattering is dominated by the Pb to B (Mg, Nb, Ti) size effect scattering (C4

scattering), a secondary effect of Pb atoms moving closer to Mg atoms and farther away

from Nb atoms via their interactions with different types of oxygen atoms. While this is

quite far from a complete model from PMN-xPT, adding correlations between oxygen and

lead displacements to more realistic models of polar behavior may be sufficient to generate

the observed asymmetry in C1 diffuse scattering.

A connection to the bulk properties of PMN-xPT is found in the compositional depen-

dence of C1. Reciprocal space maps of neutron diffuse scattering for the h00 set of Brillouin

zones for different compositions are shown in Fig. 3.37. The compositional dependence of

C1 is most easily illustrated by the set of linear cuts offset by k = 0.14 r.l.u., as shown in

Fig. 3.37(f-j). C1 is clearly present for 0 ≤ x ≤ 0.35. At x = 0.4, the intensity is drastically

weaker, and the tetragonal domain structure appears, which causes the h00 Bragg peaks

to split. (x = 0.5 data is not included due to the large distortion of the Bragg peaks at

T = 6 K). Qualitatively, C1 is most extended in |Q| at x = 0 and becomes increasingly

centralized (pushed in towards |q| = 0) as x approaches the MPB (though it still extends

out well beyond the Bragg peak). The amplitude of C1, shown in Fig. 3.29, increases with

x from x = 0.0 to x = 0.3, where it is maximal; it then falls off precipitously upon further

increase in x. The enhancement of the |q| = 0 component upon increasing x towards the

MPB is consistent with the work of Matsuura et al. [83], and the disappearance of C1 in

the tetragonal phase is consistent with Stock et al.’s finding of a lack of diffuse scattering

for x = 0.6 [81]. Thus, C1 is present in all compositions on the Ti-poor side of the MPB,

peaking in intensity in the MPB and disappearing on the Ti-rich side of the MPB.
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Figure 3.36: Diffuse scattering in the hk0 from a Monte Carlo simulated PMN crystal,
where Pb atoms are displaced along 〈110〉 directions toward O atoms with two Mg neighbors
(average Pb-O distance for this type of O atom is 0.92 times undistorted distance) and away
from O atoms with two Nb neighbors (average Pb-O distance for this type of O atom is
1.1 times undistorted distance). Neutron scattering (left) from this simulated crystal show
interesting similarities with observed data, while x-ray scattering (right) is dominated by
secondary effects; this discrepency is itself tied to the importance of O displacements in the
neutron scattering picture.
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Figure 3.37: (a-e) Reciprocal space maps of the h00 set of Brillouin zones in the (hk0) plane
measured at 6 K with neutrons for x = 0, 20, 30, 35, and 40 respectively, integrated over a
range of 0.04 r.l.u. in l. Intensity scales are logarithmic. (f-j) Corresponding cuts through
the data in (a)-(e) along (h, 0.14, 0) with intensities integrated along k from 0.12 to 0.16 and
along l from -0.02 to 0.02. The vertical scales are linear.
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Consideration of temperature dependence further connects this scattering to a low-

temperature ferroic state. In both PMN and PMN-30PT, the intensity of C1 is strongest at

low temperatures and decreases as temperature is increased. (PMN-20PT was only measured

at 6 K.) The largest range of temperatures was studied in PMN; in this sample, C1 begins

to significantly weaken above Tm(f) in the relaxor state and is fully suppressed between 600

K and 700 K. This coincides with the Burns temperature for PMN, TB = 620 K [8]. While

such temperatures were not achieved in experiments on other samples, it may be supposed

that the correlations generating C1 are present in some form below TB and absent above.

It is established in PMN-30PT that C1 scattering is strongest at low temperature, decli-

nes slightly but remains significant for temperatures up to TC , and declines more quickly

above TC . The combination of Corelli ’s elastic discrimination, a temperature dependence

suggesting that thermal interactions weaken C1, and previous neutron spin echo experiments

clearly showing this type of diffuse scattering is elastic [73] below 450 K should be a strong

argument against C1 scattering being generated by dynamic processes in PMN-xPT.

Despite significant discussion in the literature relating C1 diffuse scattering to relaxor

physics, a comparison of the compositional dependence of ∆Tmax (Fig. 3.29(c)) to that of

C1 (Fig. 3.29(d)) shows that C1 is maximal where the relaxational character is essentially

absent. This indicates that C1 is not directly related to relaxational dielectric behavior.

However, it is notable that both d33 and C1 are maximal at the MPB (x ≈ 0.3). This

suggests a physical connection between the electromechanical coupling and C1. That said,

C1 is also present in compositions (e.g. x = 0.0, 0.2) for which electromechanical properties

are poor, so its presence alone cannot account for electromechanical coupling. It is also worth

noting that while the intensity of C1 is reduced for small q in more relaxational samples, the

spatial extent of C1 appears larger. Strong electromechanical coupling implies a free energy

landscape in which multiple states have similar energies such that their populations are

influenced by external electric fields. Such a situation would lead to competing mesoscopic
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domains that are enhanced at the MPB and thus enhance C1. Adaptive phase models [84]

and anomalous domain wall densities [52] have been considered as potential mechanisms that

could connect electromechanical coupling to C1. This study highlights the need to account

for oxygen displacements in modelling and understanding strong electromechanical coupling

in this system. The recent molecular dynamics simulation of PMN-25PT by Takenaka et

al. [52] reproduces this changing asymmetry with neutron scattering; other models should

also be investigated for this feature.

3.3.2 C2 : M-point Scattering

A second contribution to the diffuse scattering, C2, consists of broad peaks centered

on zone-boundary M points. These are apparent in Fig. 3.30 for x = 0 (indicated by

white circles), but they are strongly suppressed for x = 0.3. As mentioned above, M-

point scattering has been reported in x-ray scattering experiments for crystals with x = 0.0

[70, 85] and x = 0.06 [70], but it was unresolvable for x = 0.10 [70]. These peaks have

been attributed to antiferrodistortive Pb displacements [70], and neutron inelastic scattering

experiments have shown that they originate from the condensation of unusually damped,

soft optic phonons [71]. Comparison between the neutron and x-ray scattering also reveals

a likely link between C2 and O displacements. When measured with x-ray scattering, C2

is weaker than C3 ; the opposite is true when measured with neutrons. This difference

in contrast again points toward the relative difference in the x-ray and neutron scattering

lengths for oxygen.

In Fig. 3.38(a-f), diffuse neutron scattering in the h = 3.5 plane for all compositions is

displayed, and cuts (Fig. 3.38(g-l)) are made through the scattering volumes to illustrate

how the amplitude of the M point changes with composition. It is apparent that the M points
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Figure 3.38: (a-f) Reciprocal space maps of the 3.5kl set of Brillouin zones in the (hk0)
plane measured at 6 K with neutrons for x = 0%, 20%, 30%, 35%, 40%, and 50% respectively,
integrated over a range of 0.2 r.l.u. in h. Intensity scales are logarithmic. (g-l) Corresponding
cuts through the data in (a)-(e) along (3.5, k, 0) with intensities integrated along h from 3.4
to 3.6 and along l from -0.1 to 0.1. The vertical scales are linear. Points from PMN-20PT
that are dominated by a misaligned crystallite have been removed.

are strongest for x = 0, diminish in amplitude with increasing x, and are essentially absent

at the MPB. This compositional dependence is displayed in Fig. 3.29(e), and a comparison

with ∆Tmax (Fig. 3.29(c)) shows a clear correlation between the relaxational character and

the M-point intensity.

The C2 compositional dependence thus strongly suggests a link between short-range

antiferroelectric displacements and relaxor physics. Whereas C1 is ferroic, C2 is antifer-

roelectric in origin [71]. It is proposed that the compositional dependence revealed from

this work supports a picture described by Tkachuk et al. [70] in which relaxor physics ari-

ses from competing ferroelectric and antiferroelectric interactions [70]. Indeed, this idea is
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Figure 3.39: Temperature dependence of (a)C1, (b)C2, and (c)C3 diffuse scattering compo-
nents as measured with neutron scattering in PMN. The green circles in (c) show intensity
of the (2.5, 0.5, 0.5) peak, and the magenta squares show intensity of the (3.5, 0.5, 0.5) peak.
Vertical scales are linear.

consistent with recent theoretical work of Sherrington [55], who described the relaxor state

as a soft glass resulting from frustration between competing ferroelectric and antiferroelec-

tric interactions, analogous to a spin glass resulting from frustration between ferromagnetic

and antiferromagnetic states. In this picture, which may extend to relaxor systems beyond

PMN-xPT such as BZT [56], the ferroic interactions leading to C1 are inhibited by the

antiferroelectric interactions underlying C2.

The temperature dependence of C2 also shows a link to some transitional behavior.

High-temperature experiments on PMN indicate a temperature dependence of C2 similar to

that of C1, with both being reduced in intensity around Tm(f) and being suppressed entirely

above the Burns temperature Td; this is consistent with the x-ray measurements made over

a lesser range.
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3.3.3 C3 : R-point Scattering

Another feature of the diffuse scattering, C3, is observed at the zone-boundary R points.

This feature is composed of broad peaks somewhat similar to C2, but the peaks at the R

points have a distinct temperature dependence. The temperature dependence for all C3

peaks is not identical; for example, the 7
2
1
2
1
2

peak is suppressed at higher temperatures, while

the 5
2
1
2
1
2

peak retains most of its intensity up to 700 K. This suggests two contributions to C3 :

a temperature-dependent part of similar origin to C2 and a temperature-independent part of

chemical origin (see Fig. S4). The temperature-independent scattering, similar to scattering

originally revealed in transmission electron microscopy (TEM) studies [72] and later seen

in x-ray measurements [70, 85] almost certainly arises from some ordering of B-site cations.

While too broad to be produced by highly-ordered large domains, this scattering indicates

short-range rock-salt ordering, with nearest-neighbor pairs of Mg-Mg atoms less likely to

occur than would be expected from a random distribution. Our neutron measurements

show that this ordering diminishes with increasing x (Fig. 3.29(f)) which is consistent with

the findings of transmission electron microscopy [72]. Clearly, the B-site (2+/5+) ordering

occurs to minimize the local Coulomb energy, as it is impossible for this order to persist over

long distances in PMN-xPT and maintain charge neutrality. As Ti4+ ions are introduced

with increasing x, the propensity for the charge ordering is diminished.

Burton et al. have discussed the importance of chemical short-range order in seeding

locally polar regions in PbSc1/2Nb1/2O3 [54]; however, while there certainly is a correlation

between the local cation ordering (Fig. 3.29(f)) and the relaxational dielectric behavior

(Fig. 3.29(c)), there is no obvious correlation to C1, which is often associated with polar

nanoregions (Fig. 3.29(d)). Recent theoretical work by Prosandeev et al. has suggested

that local cation ordering is associated with increased antiferroelectric activity [86]. While
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this may explain the similar dependence of C2 and C3 intensities on Ti concentration, it

is important to note the absence of C3 intensity near the MPB. This indicates that where

ferroic properties are maximal, B-site cations are randomly distributed, and a highly-ordered

arrangement of these atoms cannot be responsible for the large d33 in morphotropic PMN-

xPT.

A type of B-site order typically proposed for PMN uses an ordered, two-sublattice model,

with two sites, S and S ′, each having cj = 0.5 [86]. The S lattice in this case is occupied

entirely by Nb atoms, and the S ′ site is randomly occupied by 2
3

Mg atoms and 1
3

Nb

atoms. This arrangement can be shown to map linearly onto a description of chemical short-

range order defined directly by correlations between Mg and Nb occupancies; in this more

natural description, one has αMg−Nb
100 = −αMg−Nb

110 = −0.5, with the |αMg−Nb
lmn | = 0.5 for all

lmn→∞. Such an arrangement could be considered to be the maximally ordered case for

PMN. Simulated in DISCUS, this maximal order case results in R point peaks far sharper

than the ones observed experimentally: calculated scattering from a simulated crystal of

maximally ordered PMN shows R point peaks with full-width half-maximum of at most

0.004 r.l.u., while observed C3 peaks have a much larger reciprocal space full-width half-

maximum of roughly 0.074 r.l.u. An arrangmement more consistent with the observed data

will clearly have a reduced αMg−Nb
100 that decays to zero for finite lmn.

A simple model, setting only αMg−Nb
100 and allowing larger lmn to follow, produces peaks

on R points with width inversely proportional to αMg−Nb
〈100〉 . Table 3.3 shows these results, with

an αMg−Nb
〈100〉 = −0.25 coming closest to the experimental result. While this model is certainly

too simple to quantitatively reproduce C3, it does show that relativately small short-range

chemical ordering of the B site can produce something like what is observed experimentally.

Further investigation is likely to show some important correlations for αMg−Nb
〈110〉 or αMg−Nb

〈111〉

beyond what would be expected to result from the nearest-neighbor αMg−Nb
〈100〉 alone.
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Table 3.3: Using a Levenberg-Marquardt least-squares fitting algorithm provided by the lmfit
package for Python, Gaussian widths were assigned to the 3

2
1
2
1
2

peak as measured with x-ray
scattering from PMN at 100 K and also to the same peak from PMN crystals simulated by
DISCUS. The simulated crystals had αMg−Nb

〈100〉 set to a given value and were then generated

via a Monte Carlo process optimized for the target αMg−Nb
100 .

αMg−Nb
〈100〉 Gaussian Width (r.l.u.)

−0.10 0.260

−0.15 0.131

−0.20 0.139

−0.25 0.069

−0.30 0.053

−0.35 0.028

−0.40 0.029

−0.45 0.037

−0.50 0.037

−0.50∗ 0.004

∗Maximally-ordered crystal, with αMg−Nb
〈lmn〉 = ±0.5 for all lmn.

3.3.4 C4 : Size-Effect Scattering

A fourth diffuse scattering component, titled here as C4, was observed in both our neutron

and x-ray measurements. This component appears as extremely broad scattering that has

a pseudo-octahedral shape centered at X points 1
2
(2h + 1, 2k, 2l) as marked by the yellow

circles in Fig. 3.30. The compositional dependence is apparent from the broad humps

centered at the X points in the cuts shown in Fig. 3.38 (see, e.g., panel (j)), and the

compositional dependence is displayed in Fig. 3.29(g). This feature has its own modulation

across Brillouin zones, with strong and weak octahedra forming a checkerboard pattern in

reciprocal space. It is important to note that this modulation is not identical to that of C1.
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While C4 scattering appears in very similar forms in PMN-20PT through PMN-50PT, it is

weaker and less well-defined in pure PMN.

This feature has been previously observed in numerous experiments [57, 63] as a ”lock”

into which C1 scattering fits into as a ”key,” but its origin does not seem to have been

investigated; indeed, it had not been appreciated as a feature independent from other diffuse

scattering. An immediately relevant point is that C4 exists for all compositions measured

(x = 0 to x = 0.5); it grows initially upon increasing x, and is thus not directly correlated to

the dielectric properties, electromechanical coupling, nor the long-range polar order. It exists

independently of both C1 and C2, clearly having a distinct temperature and compositional

dependence from either of these other features while it impinges upon these other features

in reciprocal space.

C4 is reminiscent of the diffuse scattering that arises in binary alloys due to atomic

size mismatch – indeed, a formal treatment of Cu3Au found as an example in [10] shows a

slowly-varying background alternating in intensity between zones quite similar to that seen

in PMN-xPT. This suggests that differences between the average Pb-Mg, Pb-Nb, and Pb-Ti

nearest-neighbor distances produce this feature. Further supporting this conclusion is the

fact that this scattering is much more clearly seen with x-rays than it is with neutrons; this

is well-explained by the x-ray scattering lengths of Pb and the possible B site cations being

relatively larger than their corresponding neutron scattering lengths.

Within the region of study, this feature has only weak temperature dependence; at least,

the background underneath C4 seems to change more quickly than the feature itself does.

The high-temperature data from PMN was not sufficient to accurately resolve this feature.

Comparison between cuts at low temperature and high temperature in x-ray scattering from

PMN-30PT shows little change in intensity from 100 K to 400 K; the background changes

more than the feature itself does, . While this feature is much weaker when measured with

neutrons, C4 seems to slightly change above TC in various compounds, particularly in regions
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Figure 3.40: Diffuse x-ray scattering near h00 zones. The asymmetry between low-|Q| and
high-|Q| diffuse scattering is significantly larger for neutron scattering than it is for x-ray
scattering, indicating a role for correlated oxygen displacements.

far from 〈h00〉 directions, which may indicate a weakening of the local chemical size effect in

comparison to thermal effects. It may be that this scattering is suppressed more noticeably

above the Burns temperature TB; further measurements would be helpful in this regard.

The scattering can be fit to diffuse scattering terms defined in Ch. 1.2. I1 and I2 terms

were generated using lmn vectors corresponding to Pb to B-site and B-site to B-site distances,

within a four unit cell cube, with the 〈X ij
lmn〉 set proportional to their projection along lmn.

These terms were then fit to observed and symmetrized x-ray scattering from PMN-30PT at

100 K in a relatively small region of reciprocal space bounded by the h = ±2, k = ±2, l = 2,

and l = 6; Bragg peaks and surrounding C1 scattering were also removed from this data

and replaced with interpolated background, so that only C4 scattering was used for fitting.
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As the scattering is not symmetric across Bragg peaks but also not entirely antisymmetric,

both I1 and I2 terms are required to model the observed scattering. The sum of terms

qualitatively reproduce the checkerboard pattern of weak and strong octahedra (Fig. 3.41).

Table 3.4: Using a Levenberg-Marquardt least-squares fitting algorithm provided by the
lmfit package for Python, the sum of a series of I1 and I2 diffuse scattering terms plus a
linear background term was fitted to observed diffuse x-ray scattering data from PMN-30PT.
The coefficient value for each term are normalized to the largest I1 term, associated with
〈lmn〉 = 1

2
〈111〉 interactomic vectors, and only displayed if its absolute value is greater than

3% of that term.

〈lmn〉 for I1 term Coefficient for I1 term 〈lmn〉 for I2 term Coefficient for I2 term
1
2
〈111〉 1.0 〈100〉 -0.520

〈111〉 0.265 〈110〉 -0.162

〈110〉 0.183 1
2
〈111〉 -0.088

〈100〉 -0.103 〈200〉 -0.072

〈200〉 0.079 〈111〉 -0.044

〈211〉 -0.046
1
2
〈533〉 -0.031

As expected, the largest terms by far are the ones within the unit cell (Tab. 3.4); as these

results show, a decent qualitative fit can be obtained only using terms with a range within a

few unit cells, with the most important terms being associated within a single unit cell and

between. Unfortunately, the fit parameters are only the coefficients for the various terms.

Each type of atomic pair will contribute to each of these terms, and without some contrasting

images with different scattering lengths, disentangling the contributions from different atomic

pairs is not possible. This is bad enough for I1 terms, which only depend on Pb to B site

displacement correlations; for the I2 term, contributions from the B site sublattice and

Pb sublattice cannot even be separated! While this technique does yield the reasonable
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Figure 3.41: A series of I1 and I2 scattering terms with lmn < (4, 4, 4) were generated, and
their sum was fit to symmetrized C4 x-ray scattering from PMN-30PT.
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and valuable result that distortions within a few unit cells are capable of reproducing the

observed C4 scattering, it cannot plausibly yield any more specific information.

A simulation is again instructive. Using DISCUS, a PMN-30PT crystal is generated and

oxygen atoms eliminated for efficiency in calculation. The average Pb atom to B site distance

is then made dependent upon the occupancy of the B site: Pb atoms move away from Nb5+

cations and towards both Mg2+ and Ti4+ cations. This qualitatively replicates the observed

pattern of diffuse octahedra of C4 (Fig. 3.42). The Monte Carlo simulation used to generate

the model crystal uses a Lennard-Jones potential between Pb atoms and their eight nearest-

neighbor B sites. In the simulation, compared to the average Pb to B site distance, the

Pb-Mg nearest-neighbor distance is 2% smaller, the Pb-Nb distance is 2% larger, and the

Pb-Ti distance is 3% smaller. While only nearest-neighbor distances are considered in the

Monte Carlo simulation, more distant pairs are also affected 3.5. This model reproduces the

same checkerboard pattern of strong and weak diffuse octahedra observed in experiment.

C4 scattering might be expected to be absent in pure PbTiO3, but the amount expected in

the inherently inhomogeneous PbMg1/3Nb2/3O3 is less clear. While C4 scattering in PMN is

clearly weaker than it is in more Ti-rich materials, it seems odd that the difference between

Pb-Mg and Pb-Nb nearest-neighbor distances producing C4 in PMN-30PT would not be

present in PMN. Repeating the DISCUS simulation for pure PMN while varying the chemical

ordering of the B site is instructive. If the B site is randomly occupied, a simple Pb to B-site

size effect will produce scattering similar to that observed in PMN-30PT. Adding chemical

short-range order by setting αMg−Nb
100 = −0.25 weakens the resulting pattern considerably,

and imposing the maximum amount of B-site order changes the scattering further still, while

adding the expected sharp superlattice peaks at R points. This simulation suggests that the

weaker C4 scattering seen in pure PMN compared to samples containing Ti is not necessarily

due to weaker local distortions, but rather to the effect of chemical order on the scattering

produced by local distortions.
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Figure 3.42: Simulated x-ray scattering data (right) reproduces the C4 feature seen in
experimental x-ray scattering from PMN-30PT. The simulated crystal makes average Pb-
Nb nearest neighbor distances larger than average by 2.6%, and Pb-Mg and Pb-Ti distances
smaller by 1.2% and 2.2% respectively. While only nearest-neighbor potentials are considered
for the Monte Carlo simulation, larger interatomic vectors are also affected.
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Figure 3.43: Simulated x-ray scattering from PMN crystals with differing levels of chemical
order on the B site. On the left, Mg and Nb atoms are randomly distributed; in the center,
Mg and Nb atoms have an αMg-Nb

〈100〉 = −0.25; on the right, Mg and Nb atoms are maximally

ordered as described in Ch. 3.3.3, with |αMg-Nb
lmn | = 0.5 for all lmn. Strong lines connecting

R points in the maximally-ordered panel are a artifact of the finite size of the simulated
crystal.
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Table 3.5: Distances between various atomic pairs in the simulated PMN-30PT crystal used
to generate Fig. 3.42. The distance dij〈lmn〉 represents the average distance between an ij

pair of atoms separated by vector 〈lmn〉 in an undistorted crystal; D〈lmn〉 represents the
undistorted distance.

dijlmn dijlmn/Dlmn dijlmn dijlmn/ Dlmn dijlmn dijlmn/ Dlmn

dPb-Nb
1
2
〈111〉 1.026 dPb-Mg

1
2
〈111〉 0.988 dPb-Ti

1
2
〈111〉 0.977

dPb-Nb
1
2
〈311〉 1.000 dPb-Mg

1
2
〈311〉 1.001 dPb-Ti

1
2
〈311〉 1.001

dPb-Nb
1
2
〈331〉 1.002 dPb-Mg

1
2
〈331〉 1.000 dPb-Ti

1
2
〈331〉 0.999

dPb-Nb
1
2
〈333〉 1.002 dPb-Mg

1
2
〈333〉 0.999 dPb-Ti

1
2
〈333〉 0.998

dPb-Nb
1
2
〈555〉 1.000 dPb-Mg

1
2
〈555〉 1.000 dPb-Ti

1
2
〈555〉 1.000

dNb-Nb
〈100〉 0.988 dMg-Mg

〈100〉 1.008 dTi-Ti
〈100〉 1.012

dNb-Ti
〈100〉 1.002 dNb-Mg

〈100〉 0.999 dMg-Ti
〈100〉 1.011

dNb-Nb
〈110〉 1.007 dMg-Mg

〈110〉 0.995 dTi-Ti
〈110〉 0.992

dNb-Ti
〈110〉 1.001 dNb-Mg

〈110〉 1.003 dMg-Ti
〈110〉 0.994

dNb-Nb
〈111〉 1.013 dMg-Mg

〈111〉 0.993 dTi-Ti
〈111〉 0.990

dNb-Ti
〈111〉 0.999 dNb-Mg

〈111〉 1.002 dMg-Ti
〈111〉 0.992

dNb-Nb
〈200〉 0.999 dMg-Mg

〈200〉 1.000 dTi-Ti
〈200〉 1.001

dNb-Ti
〈200〉 1.000 dNb-Mg

〈200〉 1.000 dMg-Ti
〈200〉 1.001

One model that reproduces something like C4 scattering is the molecular dynamics simu-

lation presented by Takenaka et al. [52]. While this type of scattering was not investigated by

the authors, individual frames from their molecular dynamics simulation were made available

for study. To resolve C4 scattering in this model, scattering was calculated using DISCUS

from Pb atoms only and with only oxygen atoms removed. By subtracting the Pb-only scat-

tering from the oxygen-free total, the Pb to B-site and B site to B-site correlations thought

to underlie C4 were isolated from other contributions. At each of the three temperatures

for which data was provided, a feature like C4 was found in the isolated scattering.
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Figure 3.44: Simulated x-ray scattering a single frame from the molecular dynamics simula-
tion from Ref. [52] at 200 K, 400 K, and 700 K; shown is the scattering from all Pb, Mg, Nb,
and Ti atoms, with Pb only scattering subtracted. At all temperatures, the positive (red)
regions include size-effect scattering similar to that observed in PMN.
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While somewhat different from C4 scattering found in PMN-20PT or PMN-30PT, it

should be noted that the model imposed strong chemical order on the B site, with two

sublattices forming a rock-salt structure; one sublattice is entirely occupied by Nb atoms,

and the other randomly occupied by Mg and Ti atoms. This chemical ordering produces

sharp superlattice peaks at R points, and as previously shown, chemical ordering suppresses

the intensity of C4. It can thus be expected that C4 scattering from this model of PMN-25PT

will be more like that from PMN, which appears to be the case.

While further study is needed to better understand C4, this scattering feature shows

that Pb displacements are correlated to B-site neighbors. While not obviously connected to

any bulk properties, it is important to recognize the presence of C4 because it can easily

lead to confusion when interpreting diffuse scattering measurements made within a single

Brillouin zone. The presence of this scattering also highlights the inhomogeneity of chemical

environment within PMN-xPT.



CHAPTER 4

ELECTRIC FIELD EFFECTS ON DIFFUSE SCATTERING

FROM PMN-30PT

The most useful property of PMN-xPT is its large piezoelectric coupling for compositi-

ons near the morphotropic phase boundary. The effect of an applied electric field on diffuse

scattering from PMN-xPT is thus a natural avenue for investigation. Previous studies have

clearly shown the connection between C1 scattering and electric fields; indeed, this con-

nection fundamentally shows that C1 scattering is ferroic in nature. With the new structure

of C1 and the existence of C4 size-effect scattering established in the previous chapter, new

questions arise. How does the asymmetry of C1 change with the application of an electric

field – do oxygen displacements continue to have an effect? Do the changes in C1 previously

observed in low-|Q| zones manifest similarly in a wider range of Brillouin zones? How do

the chemically-driven displacements causing C4 change – are local displacement correlations

overwhelmed by the external field?

Additional experiments were conducted in an attempt to answer these questions. Both

neutron and x-ray diffuse scattering experiments were performed on PMN-30PT with and

without an electric field applied along high-symmetry directions so that changes in the diffuse

scattering could be measured.



96

4.1 X-ray Scattering Experiments

To investigate diffuse x-ray scattering from PMN-30PT under an applied field, two sin-

gle crystals previously procured for unrelated experiments were used. Each single crystal

consisted of a large plate, originally 10 mm × 10 mm × 0.5 mm, with the large surfaces cut

along the [010] and [111] faces. These large surfaces were coated with a thin layer of Pt,

allowing for the application of an appoximately uniform electric field. To allow for an x-ray

scattering experiment, pieces chipped away from the samples, leaving a rough rectangular

prism 0.5 mm thick and approximately 2 mm wide as a target for the incident beam (Fig.

4.1). The sample was then clamped at its base by copper contacts, across which a potential

difference could be applied. The voltage source used had a maximum potential difference

of 300 V; for each sample, scattering was measured with applied fields of 0 kV/cm, 1.5

kV/cm, 3 kV/cm, 6 kV/cm, and finally with the voltage source set back to 0 V to check

for hysteresis. Experiments were conducted at room temperature in ambient atmosphere;

samples were assumed to be unpolarized prior to the beginning of the experiment, and no

effort was made to depolarize them by raising their temperature above TC . At the beginning

of the scattering experiment, samples were not carefully field-cooled or zero-field-cooled; it

was assumed that time and handling sufficed to bring them to an unpolarized state.

The leads through which the voltage was applied made a full 360◦ rotation inaccessible

on the available goniometer, so data were collected over a 200◦ range. Multiple scans were

performed at each voltage to improve statistics. Some artifacts from an insulated wire

eventually creeping into the incident beam path are observed during some runs, particularly

in the data collected from the [010] oriented crystal. For each field examined, four sets

of three scans were performed, with each set taking approximately two hours to complete.

Counts were normalized to the incident beam monitor.
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Figure 4.1: Schematic and inset photo of [111]-cut sample and goniometer used for diffuse
x-ray scattering measurements from PMN-30PT with applied electric field. The x-ray beam
(red) was incident upon the rectangular region jutting up from the goniometer, while copper
contacts clamped the lower part of the sample into place and allowed for a potential difference
to be applied to the thin platinum contacts deposited on the surfaces (blue). The sample
was then rotated about the ω axis to survey a volume of reciprocal space.

Measurements taken from the sample with surfaces cut along [111] faces proved most

useful. Measurements before the application of an electric field showed diffuse scattering

like that seen in the experiment where no field could be applied (Ch. 3.2); it can be safely

concluded that the sample began in an unpolarized state. Under an applied electric field

in the [111] direction (i.e., parallel to the normal vector to the crystal faces), C1 scattering

showed a clear redistribution. Lobes of C1 scattering features parallel to [110], [101], and

[011] were enhanced and sharpened, while lobes parallel to [11̄0], [101̄], and [011̄] were sup-

pressed (Fig. 4.2). This effect is clearly established even at 1.5 kV/cm, the lowest applied

field, and clearly establishes the link between C1 and ferroelectric behavior.

C4 scattering also shows some redistribution under an applied field. The effect is more

subtle than that seen in C1 ; it is almost impossible to see with the naked eye given the

variations in background, and even line cuts show only small variations. A plot of the
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Figure 4.2: C1 diffuse scattering in the hk0 plane is redistributed under an applied field in
the [111] direction. Left panel shows scattering with no applied field, the middle panel with
a field strength of 1.5 kV/cm, and the right panel shows the difference between the two,
with blue indicating regions with stronger scattering with no applied field and red indicating
regions with stronger scattering under the applied field.

difference between scattering under no applied field and scattering under an applied field

shows a small but systematic change in C4 diffuse scattering (Fig. 4.3).

The experiments on the [010]-cut sample appeared to show some redistribution of ferroic

intensity. While initially intriguing, further examination of these data at the highest applied

field showed that the redistribution displayed differently around [h00] peaks than around

[00l] peaks, which should be equivalent under an applied field along the [010] direction (Fig.

4.9). As the field is thus likely not well-approximated as being along [010] and is in fact

of undetermined direction, useful conclusions cannot be drawn from these data. Indeed,

while the symmetry broken in the observed scattering around h00 peaks appeared to be

consistent with that broken by the applied [010] field, this would in fact break Friedel’s Law;

it would be distinguishable from that generated from the opposite applied field, which would

presumably differ only by reflection across the k = 0 plane and thus be an inversion of the

original structure.
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Figure 4.3: C4 diffuse scattering in the hk2.5 and hk3.5 planes changes slightly under an
applied field in the [111] direction. Left panel shows scattering with no applied field, the
middle panel with a field strength of 1.5 kV/cm, and the right panel shows the difference
between the two, with blue indicating regions with stronger scattering with no applied field
and red indicating regions with stronger scattering under the applied field.
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Figure 4.4: C1 diffuse scattering is redistributed by an electric field of 6.0 kV/cm, nominally
applied along the [010] direction. Compton scattering artifacts obscure some planes, but
the (hk0) plane around the 200 peak and the (0kl) plane around the 002 peak should show
equivalent scattering if the only broken symmetry is along [010]; this is clearly not the case.
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4.2 Neutron Scattering Experiments

Neutron scattering experiments were performed using the triple-axis diffractometer BT-7

at the NCNR. BT-7 provides a number of advantages over Corelli, including well-understood

sample environments for the application of an electric field and exceptional energy resolu-

tion in elastic mode. New samples, much larger than the samples used in x-ray scattering

measurements and better suited for neutron scattering measurements , were procured for

this purpose. However, BT-7 is built to take point scans1 and is thus inherently ill-suited to

measuring volumes of diffuse scattering. Given how well diffuse scattering from the material

has been characterized, the strategy was to use a small number of well-chosen ‘cuts’ showing

the relevant features of diffuse scattering and see how these proxy features changed under the

field. With these features already well-characterized in PMN-30PT by the zero-field Corelli

experiments, the qualitative change under an electric field can be well-contextualized.

Two single crystals of PMN-30PT were available for the experiment, both 10 mm x 10

mm x 5 mm, with thin gold contacts applied to the opposing 10 mm x 10 mm faces. One

sample was cut along [010] faces, and the other was cut along [110] faces. Each crystal was

heated to 500 K, above TC for PMN-30PT, for an hour prior to mounting. Each crystal

was then mounted to a boron nitride post with binary epoxy, with leads to a voltage source

soldered to the contacts; the leads and the post were then shielded with cadmium to reduce

background. The post was then placed in an closed-cycle refrigerator and mounted in BT-

7; while the temperature was kept at room temperature, the sample was under a vacuum

during measurements. An incident beam energy of 41.0 meV was used to access scattering

1BT-7 does have a position-sensitive detector, but it had not been characterized at the higher energies
utilized for this experiment and was thus not recommended for use by the instrument scientists present for
these experiments.
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near higher-|Q| peaks, horizontal collimations were set to 10’ - 80’ - 25’ - 25,’ and the final

energy detected was set to 41.0 meV, meaning only elastic scattering was measured.

For the [110] sample, scans were taken around four Bragg peaks: 300, 400, 220, and 22̄0

(Fig. 4.5). A ‘circle scan’ measured scattered intensity at points of constant |q| = 0.08

r.l.u. around each peak. and line scans were taken at h ± 0.08 for each peak. Each scan

was performed first under no applied field, again after a potential of +2.5 kV was applied to

the electrodes, and once more with a potential of -2.5 kV, for applied fields of 0 kV/cm, +5

kV/cm, and -5 kV/cm.

These scans show a change in the intensity of different lobes of C1 scattering (Fig 4.6).

Some lobes are sharpened and grow in intensity under the applied field, while other lobes

are suppressed. The lobes that are sharpened and intensified are parallel to the applied

[110] field; the lobes that are weakened are parallel to [110]. The asymmetry in diffuse

lobes observed with Corelli in zero-field scans is seen again in these measurements, with

both suppressed and enhances lobes of scattering maintaining the asymmetry of scattering

intensity between high-|Q| and low-|Q| regions.

For the [010] sample, scans were taken around five Bragg peaks: 300, 400, 030, 040, and

220. For each peak, a ’circle scan’ measured scattered intensity at 36 points of constant

|q| = 0.08 r.l.u. around the peak; additional line scans were taken at h ± 0.08 for the 300,

400, and 220 peaks and at k ± 0.08 for the 030 and 040 peaks. The scans are graphically

represented in Fig. 4.7. These scans were chosen to best investigate the change in C1 diffuse

scattering, as each would intersect with a lobe of this type of diffuse scattering. These scans

were conducted with an applied potentials of 0 kV, 2.5 kV, and -5 kV; across the 0.5 cm

width of the sample, this led to applied fields of 0 kV/cm, 5 kV/cm, and -10 kV/cm.

Compared to the [110] field, the [010] field has little effect on diffuse neutron scattering

(Fig. 4.8). While there are shifts in diffuse intensity seen in the circle scans, no lobe of

scattering appears to be suppressed by the application of the field. This is consistent with a
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Figure 4.5: Point scans of neutron scattering taken from [110] cut of PMN-30PT using BT-
7. Color images of diffuse scattering at each point are from CORELLI experiment to show
zero-field measurement, dashed red lines show line scans taken, solid red circles show the
constant |q| scan taken around each Bragg peak, and the solid red line define the θ = 0 for
each circle scan.
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Figure 4.7: Point scans of neutron scattering taken from [010] cut of PMN-30PT using BT-
7. Color images of diffuse scattering at each point are from CORELLI experiment to show
zero-field measurement, dashed red lines show line scans taken, solid red circles show the
constant |q| scan taken around each Bragg peak, and the solid red line define the θ = 0 for
each circle scan.
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previous study of diffuse scattering from PMN-32PT finding spurious and non-reproducible

changes in diffuse scattering under an applied [001] field [87].

4.3 Effect of Electric Fields on Ferroic Diffuse Scattering

Between the x-ray and neutron experiments, three different field configurations were

attempted. Neutron scattering experiments makes clear that the asymmetry in C1 persists

under an applied field, further displaying that asymmetry in diffuse neutron scattering is

intrinsic to this feature.

C1 can be said to be comprised of six lobes, one for each 〈110〉-type direction. The

experiments performed here suggest these directions are natural direction for correlations

related to ferroic order. Considering the established importance of oxygen atoms in this

ordering, it may be inferred that Pb-O distances are directly related to local ferroic structure.

The relative lack of effect in the [010] oriented crystals is also explained if 〈110〉 directions

are a natural direction for ferroic correlations. The 〈100〉 directions can only be expressed as

a sum of the 〈110〉 directions by using two directions related by reflection across 〈100〉 mirror

planes (e.g., the [100] direction must be expressed as a combination of [110] and [110]). If

correlations in one such 〈110〉 direction must be suppressed for a correlations in another 〈110〉

direction to be strengthened, a field in which these directions are symmetrically equivalent

will not strengthen or weaken correlations in either direction. This supports the concept

that polar correlations are not created by an applied field; rather, unpolarized PMN-30PT

crystals contain regions of polar correlations across all 〈110〉 directions, and an applied field

strengthens parallel components and weakens those component which are not parallel. The

effect on C1 diffuse scattering is saturated by 1.5 kV/cm, with higher fields showing little
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Figure 4.9: C1 diffuse scattering is redistributed by an electric field of 1.5 kV/cm applied
along the [111] direction, viewed near 〈200〉 peaks. Components parallel to [110], [101], and
[011] are strengthened under the applied field, while the other componenents are weakened.
Data has not been symmetrized.
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Figure 4.10: C1 diffuse scattering is redistributed by an electric field of 1.5 kV/cm applied
along the [111] direction, viewed in hk0-type planes. Components parallel to [110], [101], and
[011] are strengthened under the applied field, while the other componenents are weakened.
Data have not been symmetrized.

change from this value (Fig. 4.11). This may indicate that the correlations responsible for

bulk polarization do not significantly change once a polar state has been established.

4.4 Effect of Electric Fields on Size-Effect Diffuse Scattering

Information on C4 diffuse scattering was only accessed by the diffuse x-ray scattering

measurements. These were sufficient to provide a view at how the local displacements causing

the size effect scattering are affected by an applied electric field. Interestingly, C4 is nearly

constant in an applied field, even under a large 6 kV/cm field that is sufficient to significantly

change the C1 intensity. The total intensity of the broad scattering comprising C4 is only

subtly changed; line cuts through C4 show a clear but small redistribution of scattering

intensity.

The systematic change of C4 intensity is best appreciated with the data symmetrized

using six proper and improper rotations of 120◦ about the [111] direction coincident with the
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Figure 4.11: C1 diffuse scattering is redistributed by an electric field of 1.5 kV/cm applied
along the [111] direction. The lobe parallel to [110] is strengthened under a field, while
the lobe parallel to [110] is weakened. The effect is immediately apparent at 1.5 kV/cm;
increasing the field to 6 kV/cm produced no further change. The difference plot shows
intensities with E=0.0 kV/cm subtracted from intensities measured with E=1.5 kV/cm.
Returning the field to 0 kV/cm (as indicated by the green 0 kV/cm† scan in the legend) does
not remove the effect, indicating the polarized state has a decay time significantly greater
than the two hour measurement time.
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Figure 4.12: This view of C4 intensity shows little change under an applied field. Similar to
the changes in C1 scattering, a field of 1.5 kV/cm is sufficient to shift C4 scattering, with
increasing electric field producing little further change, and the return of the external field
to 0 kV/cm did not return C4 to its original form.
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Figure 4.13: Symmetrized scattering of half-planes shows a systematic difference after ap-
plying an electric field in the [111] direction. Data have been integrated over a ±0.1 r.l.u.
range.

applied field. In this picture, it can be more easily seen that the broad scattering features

in this quadrant are suppressed, with these regions gaining in intensity.

The small change in C4 diffuse scattering under an applied field suggests that the atomic

size effect causing C4 remains significant even when PMN-30PT is in a polarized state,

indicating strongly local and electric fields within the material are not overwhelmed even in

the polarized state.



CHAPTER 5

DIFFUSE SCATTERING FROM PZT

With a better understanding of how diffuse scattering reveals short-range order and local

correlations in PMN-xPT, it is worth considering what similar studies could reveal about

related systems. One such related system is PbZr1-xTixO3, commonly referred to as PZT.

PZT is another lead-based perovskite oxide with a morphotropic phase boundary (near

x = 0.5 for PZT) (Fig. 5.1) where electromechanical coupling is greatly enhanced [88].

However, unlike the relaxor PMN, the end material PbZrO3 is an antiferroelectric [89]. In

the solid solution, this provides a different kind of order to compete with the ferroelectric

order in PbTiO3. As established in other work [90], the phase diagram for PZT displays a

large range of behaviors even within the Ti-poor region. However, the overall picture of a Ti-

poor region with behavior more similar to that of PbZrO3 and a Ti-rich region with behavior

more similar to PbTiO3 separated by an MPB with greatly enhanced piezoelectric coupling

is analogous to that of PMN-xPT, and diffuse scattering from morphotropic PZT provides

a different perspective on the same forms of local order seen in PMN-xPT. Experiments for

this work were limited to a single composition, PbZr0.54Ti0.46O3, near the MPB.

5.1 Diffuse Neutron Scattering from PbZr0.54Ti0.46O3

Diffuse scattering from a single crystal of PbZr0.54Ti0.46O3 of mass =0.06 g was measured

using Corelli following initial diffuse scattering measurements of PMN-30PT. The crystal

was mounted using superglue and a boron nitride shield, and measurements were taken at 6
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Figure 5.1: Phase diagram of PZT, adapted from [90]. Adapted by permission from Nature,
c©2014.

K and 300 K. An area of coverage similar to that from the various PMN-xPT was obtained,

although the small crystal size reduced the overall signal strength considerably.

Neutron scattering from PbZr0.54Ti0.46O3 is shown from representative scattering planes

l = 0, l = 1, h = 2.5, and h = 3.5 measured at 6 K (Fig. 5.2) and 300 K (Fig. 5.3). A small

crystallite closely aligned with the main phase is apparent but shouldn’t have much effect on

the diffuse scattering; it is possible that this is a result of low-temperature distortion from the

high-temperature cubic phase, similar to the peak broadening seen in PMN-40PT and PMN-

50PT. While the signal from this compsition of PZT is obviously weaker than that from the

PMN-xPT systems studied, diffuse scattering like C1 can be observed around Bragg peaks.

This scattering is again stronger at low temperature than it is at higher temperature. Broad

scattering like C4 can also be observed, although the octahedron-like shapes now appear

”hollow,” with little diffuse intensity around the X point itself, and temperature again has

a limited effect on this feature. There are also sharp peaks at R points visible at 6 K, but

these peaks are not apparent at 300 K; this finding is consistent with [91].
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Figure 5.2: Diffuse scattering from PbZr0.54Ti0.46O3 at 6 K, shown in the l = 0, l = 1,
h = 2.5, and h = 3.5 planes.
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Figure 5.3: Diffuse scattering from PbZr0.54Ti0.46O3 at 300 K, shown in the l = 0, l = 1,
h = 2.5, and h = 3.5 planes.
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5.2 Diffuse X-ray Scattering from PbZr0.54Ti0.46O3

A small piece was removed from the larger crystal studied for diffuse neutron scattering.

This small piece was etched in hot HCl to ensure a clean surface and then used for diffuse

x-ray scattering experiments at beamline A2 at CHESS. Temperatures were limited to be-

tween 100 K (Fig. 5.4) and 400 K (Fig. 5.5), below the transition temperature of 550 K;

as such, there is no comparison between the high-temperature paraelectric phase and the

low-temperature phases. Measurements were also taken at 200 K and 300 K. The refinement

procedure used to generate a mapping between detector images and oriented hkl space found

that the pseudocubic lattice parameter used to fit the system actually decreased with incre-

asing temperature (Table 5.1). This observation of negative thermal expansion is consistent

with [92].

Table 5.1: PbZr0.54Ti0.46O3 lattice parameter extracted from x-ray scattering peaks fit to a
cubic unit cell.

Temperature (K) a (Å)

100 4.0852
200 4.0843
300 4.0830
400 4.0815

The large flux of synchrotron x-rays provides a considerably cleaner signal and clearer

features than are seen in the neutron scattering measurements. C1 -like scattering is now

quite apparent around Bragg peaks, and the differences between the C4 scattering in PMN-

xPT and its analog here can be easily seen, along with subtle changes between 100 K and

400 K. The sharp R point peaks are again visible at the lowest temperature, now 100 K, but

not visible at the highest temperature of 400 K.
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Figure 5.4: Diffuse x-ray scattering from PbZr0.54Ti0.46O3 at 100 K, shown in the l = 0,
l = 1, l = 2.5, and l = 3.5 planes.
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Figure 5.5: Diffuse x-ray scattering from PbZr0.54Ti0.46O3 at 400 K, shown in the l = 0,
l = 1, l = 2.5, and l = 3.5 planes.
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5.3 Components of Diffuse Scattering from PZT

With only one composition measured over a limited temperature range, the diffuse scat-

tering from PZT is best understood in comparison to that from PMN-xPT. In accordance

with this comparison, the two components of diffuse scattering that dominate in morphotro-

pic PMN-xPT, C1 and C4, are also present in morphotropic PZT. Strong diffuse scattering

centered on Bragg peaks with lobes extending along 〈110〉, similar to the C1 scattering in

PMN-xPT, is clearly observed in PbZr0.54Ti0.46O3. While the range of temperatures accessed

is insufficient to make this conclusion definitive, it appears that this scattering is strongest at

low temperatures and weakens with increasing temperature. Its origin in PZT may be safely

conjectured to be similar to that in PMN-xPT, and this work will refer to this scattering as

ferroic diffuse scattering.

C4 scattering also has its analogue in PZT. The similarity in parity and overall structure

again hint at a common origin of an atomic size effect between Pb atoms and the various B-

site occupants, and the difference in shape suggests a difference in local environments for Pb

atoms. Because the Zr and Ti atoms each have a valence of 4+ in this material, the presence

of a size effect here indicates that a difference in valence is not necessary to generate this

kind of size effect.

In addition to these two features, a third feature appears in PbZr0.54Ti0.46O3. This feature

consists of sharp superlattice peaks at R points in the Brillouin zone. These peaks are quite

sharp compared to those comprising C3 in PMN, and display a completely different kind of

temperature dependence. The origin of these peaks is an octahedral tilt system that appears

at low temperatures, doubling the unit cell. Curiously, this tilt system does not have much

effect on the other two forms of diffuse scattering present in these measurements, and no
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temperature-independent component exists, suggesting that chemical ordering is not a factor

in PbZr0.54Ti0.46O3.

5.3.1 Ferroic Diffuse Scattering from PZT

The comparison between C1 scattering in PMN-30PT and ferroic diffuse scattering in

PZT is easily made, as the patterns have an immediate qualitative similarity (Fig. 5.6). The

diffuse scattering surrounding Bragg peaks extends in 〈110〉 directions.. A common origin of

this diffuse scattering seems likely, particularly given the chemical and structural similarities

between PMN-xPT and PZT. PbZr0.54Ti0.46O3 is near the MPB for the PZT system, and the

similarity between the ferroic scattering from PbZr0.54Ti0.46O3 and the C1 scattering from

PMN-30PT, itself close to the MPB for its system, may imply that the association between

C1 and d33 in PMN-xPT extends to PZT and other similar systems.

Of particular interest is the presence of the same asymmetry between low-|Q| and high-|Q|

diffuse lobes, particularly evident in neutron scattering (Fig. 5.7). Similar to C1 scattering

in PMN-xPT, ferroic scattering from PZT is stronger on the high-|Q| side near Bragg peaks

with all-even or all-odd Miller indices and stronger on the low-|Q| side near Bragg peaks

with mixed even and odd Miller indices. While there may be differences betweeen the two

systems in the mechanism that generates this diffuse scattering, oxygen atoms must play a

similar role in each.

With all temperatures measured below TC , it is perhaps unsurprising that little change is

seen in the ferroic diffuse scattering from PbZr0.54Ti0.46O3 over the temperatures investigated

(temperature dependence of x-ray scattering shown in Fig. 5.8). This feature may perhaps

become slightly less sharp as temperature increases, but the scattering remains qualitatively

similar between 6 K and 400 K. As with PMN-xPT, this is consistent with the ferroic diffuse
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Figure 5.6: Diffuse x-ray scattering in the 400 Brillouin zone. (a-c) From PMN-30PT,
(h, k, 0), (3.9, k, l) and (4.1, k, l) planes measured at 100 K with x-rays. (d-f) From
PbZr0.54Ti0.46O3, (h, k, 0), (3.9, k, l) and (4.1, k, l) planes measured at 100 K with x-rays.
The (3.9, k, l) and (4.1, k, l) planes show the lobes of scattering in the planes perpendicular
to the (h, k, 0) plane as marked in panels (a) and (d). Data have been integrated in the
normal direction over a range of 0.02 rlu. Intensity scales are logarithmic.
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Figure 5.7: Diffuse x-ray and neutron scattering near h00 zones. The asymmetry between
low-|Q| and high-|Q| diffuse scattering is significantly larger for neutron scattering than it
is for x-ray scattering, indicating a role for correlated oxygen displacements.
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Figure 5.8: Temperature dependence of diffuse x-ray scattering near h00 zones. This type of
scattering weakens with increasing temperature, but is still present at 400 K; this is consistent
with a link between this scattering and ferroic behavior, as 400 K is below TC ≈ 630K for
this material.

scattering being correlated with the ferroelectric behavior of PZT; it may be expected that

above TC , this scattering will diminish more significantly.

5.3.2 Size-Effect Scattering from PZT

Perhaps the most obvious diffuse feature in x-ray scattering from PbZr0.54Ti0.46O3, the

broad diffuse scattering between the Bragg peaks has many of the same characteristics as

the C4 scattering from PMN-xPT. The outline of the shape seems almost identical, as does

the three-dimensional checkerboard pattern of strong and weak features in reciprocal space.
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Figure 5.9: Diffuse x-ray scattering in the (hk3.5) plane measured at 100 K, PbZr0.54Ti0.46O3

on the left and PMN-30PT on the right.

These similarities clearly indicate a similar origin of a size effect between Pb atoms and

possbile B-site occupants, with Pb atoms tending to be farther away from the heavier Zr

atoms and closer to the lighter Ti atoms.

However, as seen in Fig. 5.9, the broad octahedra of size-effect scattering in PMN-

30PT are not reproduced in PbZr0.54Ti0.46O3, where the octahedra are ’hollow,’ with little

diffuse intensity at the X point itself. This clearly indicates a significant difference in the

manifestation of the size effect between the two systems.

Calculated scattering from a model produced via Monte Carlo simulation is able to

reproduce something like this difference using a model like the one used for PMN-xPT (Fig.

5.10). Slightly increasing the difference between the possible B site occupants to 1.03 times

average for Pb to Zr and 0.97 times average for Pb to Ti diminishes intensity at the center

of the octahedral features. However, this does not quite capture the complete lack of diffuse
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Figure 5.10: Diffuse x-ray scattering in the (hk3.5) plane measured at 100 K, PbZr0.54Ti0.46O3

on the left, with calculated scattering from a crystal simulated in DISCUS on the right.

intensity surrounding the center of the feature, and attempting to place a more extreme

disparity in the Monte Carlo process tends to destabilize the simulated crystal entirely. It is

possible that a more careful set of parameters may better reproduce the observed scattering;

for now, the qualitative difference in size effect scattering between PMN-xPT and PZT may

be said to result from PZT having larger and more consistent displacement correlations

between Pb atoms and B site occupants.

The nature of Monte Carlo simulations makes it difficult to assess which displacement

correlations in the simulated crystal are important to generating any specific feature or if

that correlation uniquely does so. However, from looking at the distances generated in the

simulated crystal, it is clear that displacements only need to differ from the average over a

few unit cells to reproduce the observed pattern of scattering. The most extreme distortions
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bewteen Pb atoms and B site atoms are along 〈111〉, with other interatomic vectors featuring

little to no distortion at all. This suggests that this size effect can be quite short-range while

still reproducing the observed scattering. While the only potential used in the Monte Carlo

system was between Pb atoms and B site atoms, displacements between B site atom pairs

were also distorted within the distance of a few unit cells.

Table 5.2: Distances between various atomic pairs in the simulated PbZr0.54Ti0.46O3 crystal
used to generate Fig. 5.10. The distance dijlmn represents the average distance between
an ij pair of atoms separated by vector lmn in an simulated crystal; Dlmn represents the
undistorted distance.

dijlmn dijlmn/Dlmn dijlmn dijlmn/ Dlmn

dPb-Ti
1
2
〈111〉 0.974 dPb-Zr1

2
〈111〉 1.032

dPb-Ti
1
2
〈311〉 1.003 dPb-Zr1

2
〈311〉 1.003

dPb-Ti
1
2
〈331〉 1.001 dPb-Zr1

2
〈331〉 1.004

dPb-Ti
1
2
〈333〉 0.998 dPb-Zr1

2
〈333〉 1.002

dTi-Ti
〈100〉 1.017 dZr-Zr〈100〉 0.987

dZr-Ti
〈100〉 1.004 dZr-Ti

〈110〉 1.002

dTi-Ti
〈110〉 0.990 dZr-Zr〈110〉 1.009

dTi-Ti
〈111〉 0.987 dZr-Zr〈111〉 1.015

dZr-Ti
〈111〉 0.998 dZr-Ti

〈200〉 1.001

dTi-Ti
〈200〉 1.002 dZr-Zr〈200〉 0.999

As with PMN-xPT, only subtle changes are seen in diffuse scattering with increasing

temperature. This may hint at a small reduction in the length scales over which the size

effect is relevant as temperature is increased. It is also worth noting that the intensity in

the center of the octahedra increases relative to that at the edges as temperature increase.

The greater intricacy of the size effect scattering does invite speculation as how this feature

evolves above TC and TB. One would expect that this diffuse scattering might be suppressed

entirely at a sufficiently high temperature, but might there be an intermediate temperature
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where the size effect scattering from PbZr0.54Ti0.46O3 closely resembles that of PMN-xPT?

The answer may help shed light on how important the size effect is to the behavior of the

system.

5.3.3 R-point Superlattice Peaks in PZT

Many perovskites have been shown to have octahedral tilt systems, forming larger su-

percells [93, 94]. Such tilting is clearly present in PbZr0.54Ti0.46O3. As discussed in [90],

morphotropic PZT shows an a−a−a− type tilt system, effectively doubling the cubic unit

cell in all three dimensions and leading to sharp superlattice peaks at R points. This is con-

firmed in both the x-ray and neutron diffuse scattering studies at temperatures below 300

K. A detailed temperaure dependence of these peaks was not obtained in either study, but

the temperature steps used for the x-ray study confirm that these peaks are much stronger

at 100 K than at 200 K (Fig 5.12). These well-defined peaks are strongly diminished at 200

K and disappear by 300 K, consistent with the onset of the tilt system. It is noteworthy

that the diffuse scattering components C1 and C4 are not appreciably changed around this

temperature. While the sharp peaks are strong evidence for the octahedral tilt system in

PZT, it appears that long-range tilting order has little effect on the other forms of local order

in the system.

The lack of R-point scattering at higher temperatures does indicate a lack of chemical

ordering of the type indicated by C3 in PMN, where possible B site occupants tend to

alternate. It should be noted that if αZr−T i100 > 0 for PZT (i.e., if like atoms tended to cluster

instead of alternate), this would produce diffuse scattering at Bragg positions instead of

R points, so the absence of R point scattering cannot rule out this possibility. That said,

clustering would likely produce a system that looks more like a superposition of the long-
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Figure 5.11: Diffuse x-ray scattering from PbZr0.54Ti0.46O3 in the (hk3.5) plane measured at
100 K, with cuts from 100 K, 200 K, 300 K, and 400 K.
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Figure 5.12: Intensity of R point superlattice peaks in PbZr0.54Ti0.46O3 measured with x-rays.
Vertical scale is linear.

range ordered antiferroelectric PbZrO3 and ferroelectric PbTiO3 instead of the morphotropic

phase diagram actually seen.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The local orders of PMN-xPT give rise to four major components of diffuse scattering,

each one possessing its own compositional and temperature dependence. Ferroic (i.e. polar)

distortions give rise to diffuse scattering centered at q = 0, which is highly temperature- and

electric-field dependent, and measurements show that this scattering possesses a rich struc-

ture that strongly varies between Brillouin zones and can only be explained by considering

both cation and oxygen displacements. Existing models of C1 need to be reconsidered with

this in mind; there is an entire network of atoms in PMN-xPT, and approximating ferroic be-

havior through Pb2+ displacements alone will at best miss the structural contributions from

O2− displacements. The zone-dependent shapes of the diffuse scattering identified in this

work should serve as a guideline for judging both existing and future models. More generally,

this is a clear demonstration of how the reproduction of diffuse scattering shapes in only one

or two Brillouin zones is inadequate to judge the validity of a model. C1 scattering correlates

with electromechanical coupling, and this may be understood by the presence of multiple

competing ferroic domain states near the MPB. Despite the correlation that has commonly

been drawn between this form of diffuse scattering and relaxor physics, the compositional

dependence shows that the ferroic diffuse scattering is greatest at the MPB, where the relax-

ational properties are negligible. On the other hand, antiferroelectric distortions, which give

rise to scattering at the zone-boundary M points and are also temperature-dependent, possess

a compositional dependence that strongly correlates to frequency-dependent susceptibilities.

Regions of short-range antiferroelectric order are likely seeded by chemical short-range orde-

ring, which possesses a very similar compositional dependence. Our work suggests a picture
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of relaxors in which competition between local ferroelectric and antiferroelectric correlations

leads to relaxational dielectric properties in Pb-based oxides due to frustration. As chemi-

cal ordering and antiferroelectric correlations are reduced, relaxational properties dissipate.

Charge (Mg2+/Nb5+) ordering occurs locally in PMN, and this ordering diminishes upon

increasing Ti4+ substitution. Ionic size mismatch leads to broad diffuse components that are

only weakly temperature-dependent below TB, present for all compositions, centered at X

points, and have been reproduced in simulations.

An avenue of future work should be to apply the combination of neutron scattering and

x-ray diffraction techniques described here with compositional studies in systems beyond

PMN-xPT. The preliminary work presented here on a single composition of PZT provides

an interesting contrast; this could be filled out in a similar study spanning the phase diagram

of PZT. Similar studies on PbZn1/3Nb2/3O3 and PbSc1/2Nb1/2O3 are similarly indicated, as

would be studies of lead-free relaxors such as Na1/2Bi1/2TiO3. A rough explanation for the

large d33 here may be a balance between the strong double-well potential of ferroelectric

PTO and the strong local antiferroelectric interactions in PMN; a relatively flat energy

landscape with small local minima could provide a large range of energetically different

states with significant structural differences within a narrow band of potential energy. Several

morphotropic systems share this general picture of ferroelectric behavior mixing with some

competing type of polar ordering; it is likely that the competition between different kinds of

short-range order is what defines these systems.

Even as this work is produced, methods for collecting diffuse scattering data improve, par-

ticulary with x-rays, where a method of adjusting goniometer angles has shown remarkable

promise in removing scattering artifacts from Pilatus data. New detectors allow for greater

efficiency yet in collecting x-ray data, and techniques will improve as more experiments of

this kind are performed. The Compton artifact so obviously marring the x-ray scattering

data can be removed by utilizing more highly absorbing x-ray detector materials such as
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CdTe, and the offending pixels can be resampled entirely by changing goniometer angles as

well as detector positions between scans. Recent detector tests at Sector 6 of the Advanced

Photon Source included a scan of PMN, where these techniques provided a superior diffuse

scattering dataset (alas, too late for inclusion in this work!).

The diffuse scattering analysis presented here is relatively crude and limited to quali-

tative models and observations. Quantitative models will be difficult to produce given the

complexity of diffuse scattering data, but newer methods of analysis may provide further

insights. In particular, new developments in the 3D-∆PDF method [95, 96] should provide

significant information regarding length scales and the exact nature of local distortions,

especially given the contrast between neutron scattering and x-ray scattering data. With

different components of scattering identified, a ‘divide-and-conquer’ approach, with each

component separated and transformed individually to take advantage of the linearity of the

Fourier transform, might be able to isolate the the different kinds of local distortions.
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TRANSFORMING X-RAY DETECTOR IMAGES INTO
ORIENTED HKL SPACE
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A stack of x-ray detector images can be transformed into hkl space via a series of linear

transforms plus a non-linear transform to change from real space to reciprocal space – es-

sentially, many changes of basis for a three-dimensional vector space. This treatment was

originally developed by Branton Campbell in an attempt to generate something compatible

with Bruker software; it has since been adapted by Guy Jennings for use in the CCTW

software and is used in the NXRefine package for analysis of x-ray scattering data. The fol-

lowing treatment has been slightly adapted to account for a detector that is not physically

coupled to the sample goniometer via a 2θ arm, i.e., the detector tilts are independent of the

goniometer tilts, and the detector is always normal to the incident beam, modified by the

detector tilts.

The direct lab coordinate system is defined with +x̂ coinciding with the incident beam

direction, +ẑ pointing along the direction from the base of the goniometer circle to the

sample position (usually vertical from the floor), and +ŷ so as to define a right-handed

coordinate system. The goniometer has three adjustable (and perhaps partial) angles, ω at

the base of the goniometer, χ a mounted on the ω circle, and φ the motor closest to the

sample (and usually the only motor moving during a scan). When ω = χ = 0, the axis

about which φ rotates is coincident with +ẑ within some small angle of error about ŷ, called

goniometer pitch and denoted here as ψ. Errors in angle about x̂ and ẑ can be incorporated

into other goniometer angles.

The plane of the detector is ideally normal to the incident beam, with any deviation

defined by yaw (rotation about +ẑ), pitch (rotation about +ŷ, and roll (rotation about

+x̂). The distance from the sample to the detector is l.

There are several coordinate systems that define the relation between reciprocal space

and the detector:

1) Pixel coordinates; measured in pixels from the beam center incident on the detector

face. In this system, +x̂ is horizontal, left-to-right as viewed on the detector face (corre-
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sponding to direct lab +ŷ) and +x̂ is vertical (corresponding to direct lab +ẑ). Pixels are

squares of length sp. With xcen and ycen being the beam center location on the detector in

pixels, the vector tpd is defined

tpd =


xcen

ycen

0


2) Oriented-detector coordinates; measured in millimeters and with the same axes as the

direct lab coordinate system when all detector and goniometer angles are zero. The matrix

O transforms from the direct lab space to pixel axes; in the experimental geometry described

above,

O =


0 0 −1

−1 0 0

0 1 0


3) Direct-lab coordinates, as defined above. In the lab axes, using the notation Rî(θ) to

indicate a rotation about axis î of angle θ, D is defined:

D = Rx̂(roll)Rŷ(pitch)Rẑ(yaw)
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and the vector going from the origin of the oriented-detector frame to the origin of the

direct-lab frame (i.e., from the beam center on the detector to the sample) is

tds =


l

0

0


4) The reciprocal-lab frame, with identical axes to the direct lab frame, using units of

inverse Angstroms. This frame could be called unoriented Q space, as it is independent of

the orientation of the crystal being studied. The vector tE pointing from the origin of the

reciprocal-lab frame to the origin of the direct lab frame is defined by the wavelength λ, with

tE = ( 1
λ
, 0, 0).

5) The goniometer-head coordinate system, with identical origin and units to the reciprocal-

lab frame. When all goniometer angles are 0◦, this is identical to the reciprocal-lab frame,

but the axes move with the goniometer. The matrix that transforms from goniometer-head

coordinates to reciprocal lab coordinates is G; using the conventions outlined earlier,

G = Rẑ(φ)Rx̂(χ)Rẑ(ω)Rŷ(ψ)

6) The crystal coordinate system, with identical origin and units to the reciprocal-lab system.

The axes are fixed to the crystal, with +x̂ coinciding with the crystal +â∗, +ŷ perpendicular

to +x̂ in the plane defined by â∗ and b̂∗ and the angle between +ŷ and +b̂∗ less than 90◦, and

+ẑ completing the right-handed set. The matrix that transforms from crystal coordinates

to goniometer-head coordinates is U. For an orthorhombic crystal, if â∗, b̂∗, and ĉ∗ coincide

with x̂, ŷ, and ẑ, U will be the identity matrix.

7) The reciprocal-lattice coordinate system, defined by reciprocal lattice vectors â∗, b̂∗,

and ĉ∗. The matrix B transforms from this basis to the crystal coordinate system. The
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inverse of this matrix B−1 can be written in terms of the unit cell parameters a, b, c, α, β, γ

as

B−1 =


a b cos γ c cos β

0 b sin γ c cosα−cosβ cos γ
sin γ

0 0 c
√

sin2 β − ( cosα−cosβ cos γ
sin γ

)2)


If the unit cell has α = β = γ = 90◦, this easily inverts to

B =


1/a 0 0

0 1/b 0

0 0 1/c


By transforming from one frame to the next, one can go from a stack of detector images to

reciprocal lattice coordinates.

v1 = (i, j, 0)

v2 = sp ×O−1(v1 − tpd)

v3 = D−1v2 − tds

v4 = (Qx, Qy, Qz) =
1

λ

v3

|v3|
− tE

v5 = G−1 · v4

v6 = U−1 · v5

v7 = B−1 · v6 = (h, k, l)
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Figure B.1: Email permitting the use of previously published work for this dissertation.

Some of the work presented here, particularly in Chapter 3, was previously presented in

Nature Materials Article ”The Relation Between Local Order and Material Properties in

Relaxor Ferroelectrics.” The journal gives permission for authors to reproduce their original

contribution in a book or thesis, and this permission has been explicitly reiterated in the

email above.




